

Rijken Julian
Supervisor: Vanden Abeele Alex
Coach: Geeroms Kasper

Physics-Based Traffic
Simulation for Games

Graduation Work 2024-2025

Digital Arts and Entertainment

Howest.be

Rijken Julian

DAE - Graduation work 2024-2025 1/78

Contents
Contents.. 1

Abstract.. 4

Keywords.. 5

Preface... 5

List Of Figures... 6

Introduction... 11

1. Research Question ... 12

2. Hypothesis .. 12

Literature Study / Theoretical Framework................................... 13

1. Introduction to Traffic Simulations for Games 13

1.1 Historical Context and Importance in Gaming 13

1.2 Real-World vs. Game Traffic Simulations 13

1.3 Challenges in Current Traffic Simulation Methodologies 14

2. Foundational Theories ... 15

2.1 Path Finding Algorithms .. 15

2.2 Agent-Based Modeling and Behavior 15

2.3 Game Theory in Traffic Simulations 15

3. Relevant Frameworks and Case Studies 16

3.1 Open-World Traffic Simulations 16

3.2 Intersection Design and Traffic Flow Analysis 16

4. Overview of Tools and Techniques 16

4.1 FOSS Solutions and Proprietary Systems 16

4.2 Physics-Based and Attached Models 17

4.3 Existing Studies on Traffic Dynamics 18

Case Study... 19

1. Introduction .. 19

Rijken Julian

DAE - Graduation work 2024-2025 2/78

2 Road Network ... 20

2.1 Existing Systems ... 20

2.2 Proposed Methodology ... 21

3 Physics-Based Testing .. 23

4. Agent Steering .. 24

4.1 Path Alignment Using PID ... 25

P (Proportional) & D (Derivative) - Control Results 26
I (Integral) - Control Results .. 28

4.2 Path Alignment Correction .. 29

Backwards Correction Results .. 30
Instability Correction Results .. 30

4.3 Path Deviation Optimization and Smoothing 32

4.4 Proposed Methodology for Path Smoothing 34

Deviation Optimization Interpolation Results .. 35
5. Agent Inertia Management .. 37

5.1 Speed limit .. 40

Speed Limit Proportional Gain Test Results .. 41
Speed Limit Smoothing Results ... 42

5.2 Stop Point ... 43

Stop Point Results .. 43
5.3 Sharp corners .. 45

Speed Limit Deviation Results ... 45
5.4 Combined Input ... 46

6 Obstacle Avoidance ... 46

6.1 Directional Front Sensor ... 47

Directional Front Sensor Corner Navigation Results 48
6.2 Rotational Front Sensor .. 49

6.3 Path Sampling Front Sensor ... 49

Path Sample Number Results .. 50
Path Sample Angle Optimization Results .. 52

6.4 Stop Point Positioning Using Front Sensor 53

Rijken Julian

DAE - Graduation work 2024-2025 3/78

Stop Point Positioning Results .. 53
7. Agent Driving Practical Results 54

7.1 Phantom Traffic Jams ... 55

8. Intersections ... 56

8.1 Intersection Priority Rules .. 58

Intersection Priority Rules Results ... 59
8.2 Roundabouts .. 60

8.3 Intersection Types ... 60

Intersection Type Results ... 61
Discussion... 62

Conclusion... 64

Future work.. 65

1. Special Scenarios ... 65

2. Car Lifetime Management ... 65

3. Agent Specific Behavior ... 66

Critical Reflection.. 67

References... 69

Acknowledgements... 72

Appendices... 73

1. Online Repository ... 73

2. Disambiguation .. 73

Rijken Julian

DAE - Graduation work 2024-2025 4/78

Abstract
English
This paper investigates the implementation details for a physics-based traffic
simulation to be used in a gaming environment, focusing on agent behavior and
traffic rule adherence. Leveraging Unity as a testing platform, the research
evaluates the impact of different path-following, inertia management,
collision avoidance, and intersection management strategies. This shows how
different techniques and variables play a role in the final traffic
simulation.

A foundational understanding of vehicle dynamics is developed through the
integration of a virtual Proportional-Integral-Derivative (PID) controller for
path alignment, speed regulation, and obstacle avoidance. The study introduces
innovative methodologies such as lookahead interpolation for smoother path
adherence and combined speed limit / stop point methods for managing the
agent’s inertia.

This study aims to leave the reader with a complete understanding of the
workings for a simple, effective physics-based traffic simulation capable of
interacting with the player and environment.

Dutch
Deze scriptie onderzoekt de implementatiedetails van een op fysica gebaseerde
verkeerssimulatie, ontwikkeld voor gebruik in een gamingomgeving, met een
focus op het gedrag van agents en de naleving van verkeersregels. Door Unity
als testplatform te gebruiken, wordt de invloed geëvalueerd van verschillende
strategieën voor padvolging, snelheidsbeheer, botsingsvermijding en
kruispuntbeheer. Het onderzoek belicht hoe diverse technieken en parameters
bijdragen aan de algehele prestaties en realiteit van de verkeerssimulatie.

Een fundamenteel begrip van voertuigdynamiek wordt bereikt door de integratie
van een virtuele Proportioneel-Integraal-Derivatief (PID)-regelmechanismen
voor padvolging, snelheidsregeling en obstakelvermijding. Deze scriptie
introduceert innovatieve benaderingen, zoals interpolatie, vooruitkijken voor
soepelere padvolging en gecombineerde snelheidslimiet / stopmethoden voor
effectief snelheidsbeheer van agents.

Het doel van deze studie is om de lezer een uitgebreid inzicht te bieden in
het ontwerp en de functionaliteit van een eenvoudige, maar effectieve op
fysica gebaseerde verkeerssimulatie, die dynamisch kan interageren met zowel
spelers als de virtuele omgeving.

Rijken Julian

DAE - Graduation work 2024-2025 5/78

Keywords
Traffic Simulation, Autonomous Vehicles, Simulation Framework, Multi-Agent
Systems, PID Control, Unity, Agent, Physics Simulation

Preface
Ten years ago, I discovered my passion for games and game development, a
journey that has profoundly shaped my personal and professional pursuits.
Since that time, I have been deeply immersed in both creating and playing
games, with a particular fascination for open-world experiences. Among these,
the Grand Theft Auto (GTA) series has stood out as a source of inspiration,
especially for its sophisticated traffic simulations.

Games like the GTA series are remarkable for their ability to create dynamic,
immersive worlds. Their traffic systems, in particular, contribute
significantly to the realism and engagement of the player. These systems
convincingly simulate the complexities of urban traffic, scaling seamlessly
even as players soar above the cityscape in an aircraft. Such ingenuity
captured my interest and fueled my curiosity about the underlying techniques
that make these simulations possible.

Recently, while revisiting an older entry in the series, GTA IV, I found
myself captivated by its traffic mechanics. Each glance at the bustling
streets reminded me of the intricate systems working behind the scenes to make
the world feel alive. This experience motivated me to embark on a personal
project: creating my own version of a GTA-inspired game. The project
progressed well, and I successfully developed a drivable car with realistic
suspension physics. However, when it came time to implement a traffic system,
I encountered a significant challenge. My research revealed a surprising lack
of accessible resources on the topic. Most existing solutions were either
overly simplistic, inflexible, or prohibitively expensive. This gap in
available knowledge and tools further inspired me to develop my own traffic
simulation system and document my findings in this paper.

Despite my extensive experience in game development, one area I had always
avoided was artificial intelligence (AI). Creating non-player characters
(NPCs) and enabling them to make autonomous decisions has always seemed
daunting. Writing this paper offered me a unique opportunity to delve into a
subject that had long been outside my comfort zone. I chose traffic

Rijken Julian

DAE - Graduation work 2024-2025 6/78

simulations as my focus, both to expand my understanding of AI and to address
a tangible challenge in game development.

Initially, I envisioned this paper as a broad exploration of how to make in-
game cities feel alive. However, after consulting with my supervisor, I
realized that such a wide scope would be impractical, as it would encompass
topics ranging from human agent behavior to artistic design considerations.
Consequently, I narrowed my focus to comparing existing traffic simulation
methodologies. Even this refined goal presented challenges, particularly due
to the limited access to commercial simulation packages. As a practical
developer, I felt compelled to create something of my own alongside the
research.

Ultimately, I settled on building my own simulation and concentrating the
paper on analyzing established formulas and methods for traffic simulation. To
streamline the process, I started with an open-source package that provided a
foundational framework, though with limited features. This approach allowed me
to focus on extending and improving the system while conducting a comparative
study of existing techniques.

This paper represents a deeply personal journey into a subject that has long
intrigued me. It is my hope that this work contributes to the body of
knowledge on traffic simulations and inspires others to explore this
fascinating and publicly under-researched area of game development.

List Of Figures
Figure 1. Example of how the traffic system is created by separating it into

smaller components. .. 19
Figure 2: A top-down preview of Unreal Engine Zone Graphs with colors

indicating road size. .. 20
Figure 3. net file opened in sumo-gui. It shows the map of the German city

Eichstätt. Sources from SUMO documentation [21]. 21
Figure 4: An example of the nodes laid out over simple road tile models by

Kenney [24]. These two segments, going in opposite directions, are used
as a test ground for the path following part of this case study. 22

Figure 5. Illustration of the connectivity between different segments creating
an intersection. The endpoint of each segment is denoted by white text,
while the starting point is indicated by black text. Segments are
connected by a yellow line. .. 23

Rijken Julian

DAE - Graduation work 2024-2025 7/78

Figure 6. Example of an agent driving up and down a slope, demonstrating the
use of a physics-based vehicle model and the suspension system in
action. .. 24

Figure 7. Only P with low proportional gain. P = 0.2 D = 0.0 I = 0.0...... 26
Figure 8. Only P with medium proportional gain P = 0.7 D = 0.0 I = 0.0.... 26
Figure 9. Only P with high proportional gain P = 2.0 D = 0.0 I = 0.0...... 26
Figure 10. P and D with low derivative gain. P = 0.2 D = 0.05 I = 0.0...... 26
Figure 11. P and D with ideal derivative gain P = 0.7 D = 0.3 I = 0.0..... 26
Figure 12. P and D with high derivative gain P = 2.0 D = 2.0 I = 0.0...... 26
Figure 13. Example of an agent with a broken back wheel forcing the agent to

deviate from the path. ... 27
Figure 14. Showing I with no integral gain. P = 0.7 D = 0.3 I = 0.0........ 28
Figure 15. Showing I with high integral gain. P = 0.7 D = 0.3 I = 2.0...... 28
Figure 16. Showing I with ideal integral gain. P = 0.7 D = 0.3 I = 2.0..... 28
Figure 17. Screenshot from the physics agent behavior component. Example of

how the agent has advanced parameters that might make it behave in a
difficult to predict fashion. .. 28

Figure 18. Showing Issue. Illustrating how the agent follows a longer path due
to its inability to account for its own orientation. 29

Figure 19. Showing Issue. Shows how the agent becomes unstable when it
deviates too far from the path. 29

Figure 20. Showing Without & With Backwards Correction. Shows how the agent
switches between Backwards Correction and PID. 30

Figure 21. Showing Without Instability Correction. Shows how the agent becomes
unstable when it deviates too far from the path. Similar to fig 17. .. 30

Figure 22. Showing With Instability Correction. Shows how the agent starts
outside the IC distance of 5 meters. And switches to PID (Shown in red).
 ... 30

Figure 23. Formula used to calculate the steering input.................... 31
Figure 24. Formula used of directional steering implemented in C# using Unity

 ... 31
Figure 25. Snippet of PID implementation for agent in C# using Unity A

formula for PID can be found in the appendix. 31
Figure 26. Visualization of agent following the path and overshooting the

corners. Notably the agent skips the last corner as he simply overshoots
on to another part of the path. 32

Figure 27. Formula for calculating lookahead............................... 33
Figure 28. Snippet of LAT implementation for agent in C# using Unity....... 33

Rijken Julian

DAE - Graduation work 2024-2025 8/78

Figure 29. Unwanted deviation Figure 30. Interpolating
solution ... 33

Figure 31. Showing quadratic Bezier curve where t = 0.5, visualized in
GeoGebra. .. 34

Figure 32. Visualization of the agent, with the current sample represented by
the small dark blue ball, the yellow ball indicating the interpolated
sample, and the cyan ball representing the future sample. The agent is
shown cutting the corner as it follows the interpolated sample. 34

Figure 33. Showing 0.0 LAT with very direct connection to the path but very
abrupt deviations. ... 35

Figure 34. Showing 0.75 LAT allows for some smoothing between the corners.
More deviation is created but with an overall smoother result. 35

Figure 35. Showing 1.25 LAT creating a very smooth path but. At the cost of
accuracy in return creating even more deviation. 35

Figure 36. Visualization of Average Deviation over Lookahead Time showing how
balancing the 2 values is important for minimal deviation. 36

Figure 37. Code snippet showing how the PID controller is made generic using
an evaluate function within the PIDController class. 37

Figure 38. Code snippet showing a [Serializable] struct for the PID settings38
Figure 39. Showing the physical braking test with full throttle and full

braking. ... 39
Figure 40. An example of a vehicle's inertia shown using Distance & Speed

together with Throttle & Brake. using full brake and throttle based on
braking line without PID control. 39

Figure 41. Example of agent full braking making the car tilt forward due to
inertia. ... 39

Figure 42. Formula for calculating speed limit proportional input.......... 40
Figure 43. Code snippet showing the final calculation for speed limit...... 40
Figure 44. Showing the physical speed limit test used for the graphs below. 41
Figure 45. Speed limit test with gain set to: G = 0.04..................... 41
Figure 46. Speed limit test with gain set to: G = 0.15..................... 41
Figure 47. Speed limit test with gain set to: G = 0.5...................... 41
Figure 48. Example of move towards formula used for limiting the change in

input for the speed limit calculation 42
Figure 49. Graph showing the speed limit smoothing results................. 42
Figure 50. Showing a top-down view of the test scene for the stop point test.

 ... 43
Figure 51. Showing braking test with gain set to: P = 0.05 D = 0.15........ 43
Figure 52. Showing braking test with gain set to: P = 0.1 D = 0.2.......... 43

Rijken Julian

DAE - Graduation work 2024-2025 9/78

Figure 53. Showing braking test with gain set to: P = 0.6 D = 0.8.......... 43
Figure 54. Code snippet for calculating the stop point input value......... 44
Figure 55. Top-down view of deviation results with speed limits. Average

Deviation = 0.505 .. 45
Figure 56. Example of the types of danger values would be included if such a

system would be implemented .. 45
Figure 57. Agent crashing into a pile of boxes............................. 46
Figure 58. Code snippet of sensor component................................ 47
Figure 59. Code snippet of using sensor component while rotating it towards

the steering angle. .. 47
Figure 60. Top-down view of agent driving along a curved path with sensor

aimed in the steering direction. With the red ball representing the stop
point. There is an error shown as the front sensor does not see the box
in the center of the path. ... 48

Figure 61. Example of agents driving along a curved path. They are not
correctly capable of stopping for each other when there is a sharp
corner. .. 48

Figure 62. Showing sensor prediction using the kinematic bicycle method
failing to detect agent ahead of the path. 49

Figure 63. Code snippet of calculating the turning center.................. 49
Figure 64. Showing front sensor sampling path points with samples per meter

set to: 1.0 .. 50
Figure 65. Showing front sensor sampling path points with samples per meter

set to: 0.5 .. 50
Figure 66. Showing front sensor sampling path points with samples per meter

set to: 0.1 .. 50
Figure 67. Code snippet of line smoothing algorithm used for the optimization

of the front sensor. ... 51
Figure 68. Path Sampling Optimization using minimum angle of: 60 degrees... 52
Figure 69. Path Sampling Optimization using minimum angle of: 20 degrees... 52
Figure 70. Path Sampling Optimization using minimum angle of: 10 degrees... 52
Figure 71. Formula for calculating the stop point.......................... 53
Figure 72. Stop point positioning. Using:.................................. 53
Figure 73. Stop point positioning. Using:.................................. 53
Figure 74. Stop point positioning. Using:.................................. 53
Figure 75. Showing agents lined up behind each other as they brake for the

stopping point. Red boxes represent the agent size, and the white boxes
represent the physics box cast. 53

Rijken Julian

DAE - Graduation work 2024-2025 10/78

Figure 76. Showcase of agents driving on a two directional single lane road.
Going from start to end visualized by the tire marks. 54

Figure 77. Example of road blocked by obstacles............................ 54
Figure 78. Example with the lack of a phantom traffic jam due to no

disturbance. ... 55
Figure 79. Example of phantom traffic jam with disturbance................. 55
Figure 80. Agent crashing due to the lack of intersection guidance......... 56
Figure 81. Example of intersection defined by a red box surrounding the

waypoints making up the intersection. 56
Figure 82. Example of intersection. Green lines representing clear turns, red

as blocked turns and blue for occupied turns. Agents with a blue ball
are set to moving, agents with a red ball are set to waiting. 57

Figure 83. Top-down view of two single lane roads coming together for an
intersection. Both roads have two turns. Each side has ten cars totaling
twenty cars for this intersection test. 58

Figure 84. Directional Priority showing how agents drive in clusters....... 59
Figure 85. Arrival Priority showing consistent one by one driving behavior. 59
Figure 86. Lane Occupation showing how agents flow through the intersection as

soon as a turn is available. ... 59
Figure 87.. 60
Figure 89. Large Roundabout: Quick driving with no stopping................ 61
Figure 88. Diamon Interchange: Very quick driving.......................... 61
Figure 90. Small Roundabout: Quick driving with minor stopping............. 61
Figure 91. Simple Intersection: Agents take a long time to clear........... 61
Figure 93. Agents using their blinkers because Julian once again does not know

how to focus ... 67
Figure 92. Agents jumping, because Julian apparently does not know how to

focus .. 67
Figure 94. PID controller overview. By Arturo Urquizo - File:PID.svg, CC BY-SA

3.0, https://commons.wikimedia.org/w/index.php?curid=17633925 77

Rijken Julian

DAE - Graduation work 2024-2025 11/78

Introduction
Traffic simulations have been integral to creating engaging and realistic game
environments. From city-building games like Cities Skylines to open-world
experiences such as the Grand Theft Auto series, these systems not only
enhance immersion but also define core gameplay elements. Despite their
significance, there is a noticeable lack of accessible resources detailing the
methodologies for designing game-specific traffic simulations, particularly
with a focus on physics-based interactions.

This paper investigates the implementation of a physics-based traffic
simulation tailored for gaming environments. Unlike real-world traffic
simulations, which prioritize accuracy for urban planning, traffic simulations
in games must strike a balance between realism and computational efficiency,
with the primary objective of allowing the player to physically interact with
the other vehicles on the road, especially in the case of open-world games.
The study aims to address this unique balance by exploring agent behaviors,
traffic rule adherence, and the interplay of physics-based dynamics.

Through this work, the paper aims to contribute not only to the theoretical
understanding of traffic simulations in gaming but also to the practical
development of tools and frameworks that empower game developers to craft
dynamic and immersive virtual worlds.

Rijken Julian

DAE - Graduation work 2024-2025 12/78

1. Research Question
This paper goes into detail to answer the following question:

“How are physics-based traffic simulations for games affected by
agents and traffic rules?”

In order to show the effects of these rules, multiple tests will be conducted
using different sets of rules, comparing and distinguishing the results using
quantitative methods.

2. Hypothesis
Several hypotheses have been formulated to help answer the research question.
This paper will use these to further refute or confirm the following
assumptions.

H0 (Null):
“Agent and traffic rules have no visible impact on the simulated traffic”

H1 (Agent Decisions):
“Different agent decisions show a visible impact on the final simulation when
it comes to speed and path deviation”

H2 (Collision Avoidance):
“Accurate methods for collision avoidance are vital for creating a physics-
based traffic simulation”

H3 (Intersection Flow):
“Different types of intersections have an effect on traffic flow”

Rijken Julian

DAE - Graduation work 2024-2025 13/78

Literature Study / Theoretical Framework

1. Introduction to Traffic Simulations for Games

1.1 Historical Context and Importance in Gaming
Traffic simulations have long played a pivotal role in enhancing the realism
and interactivity of virtual environments. Early examples can be traced back
to city-building games such as SimCity (1989) [1], which introduced players to
simplified traffic systems as part of urban planning mechanics. Games these
days require increasingly sophisticated simulations tailored to their genre
and objectives. For instance, Cities Skylines employs realistic agents with
individual routines, making traffic flow and congestion a core challenge and
narrative element—essentially the "main character" of the gameplay. In
contrast, open-world games like Grand Theft Auto (GTA) treat traffic as a
dynamic backdrop, designed to enrich the environment and provide reactive
elements for player interaction, while keeping the player themselves as the
central focus. This difference in how traffic is approached across genres is
an observation I made and appears to be a novel perspective not previously
described in existing literature, underscoring the diversity of traffic
simulation roles in modern gaming.

1.2 Real-World vs. Game Traffic Simulations
Real-world traffic simulations focus on accuracy and precision, utilizing
advanced computational models and data analysis, to optimize urban planning
and infrastructure design. For example, tools like SUMO (Simulation of Urban
Mobility) provide detailed simulations of traffic flow, road network design,
and intersection behavior for real-world applications, enabling city planners
to evaluate infrastructure efficiency and address congestion issues [2].

In contrast, game traffic simulations aim to balance realism with performance
constraints and gameplay considerations. These simulations often employ
simplified algorithms and heuristic approaches to create believable traffic
systems that are computationally lightweight enough for real-time rendering.
This is further discussed in the development diary #2: Traffic AI by Paradox
[3]. Also, Cities Skylines uses procedural generation and agent-based modeling
to simulate realistic traffic dynamics, making traffic flow a core gameplay
challenge [1]. Similarly, games like Grand Theft Auto V prioritize immersive,

Rijken Julian

DAE - Graduation work 2024-2025 14/78

physics-driven vehicular interactions to enhance the player's experience
within a dynamic, open-world environment [4] [5].

The divergence in methodologies reflects the differing objectives of these
systems. Real-world models prioritize data-driven accuracy for optimizing
urban mobility, while game simulations emphasize visual plausibility and
interactivity. Frameworks like Unity's ITS package exemplify this balance,
combining physics-based vehicle simulations with adaptive agent behaviors
tailored to gaming environments [6].

1.3 Challenges in Current Traffic Simulation Methodologies
The development of effective traffic simulations for games presents several
challenges:

Computational Efficiency
Ensuring real-time performance when simulating thousands of agents within a
dynamic environment.

Realism vs. Gameplay
Striking a balance between realistic traffic behaviors and maintaining
engaging gameplay.

Agent Decision-Making
Designing intelligent, adaptive non-playable characters (NPCs) that respond to
a constantly changing environment.

Transparency and Accessibility
The limited availability of open-source frameworks specifically tailored to
game development needs. Many existing frameworks are either proprietary, such
as Mobile Traffic System v2.0 by Gley for Unity or Traffic Control System by
Overtorque Creations for Unreal Engine, or designed for real world use cases
while running in game engines. Take for example SUMO (Simulation of Urban
MObility) [2], an free and open-source traffic simulation software.

Rijken Julian

DAE - Graduation work 2024-2025 15/78

2. Foundational Theories

2.1 Path Finding Algorithms
Path following is crucial in traffic simulations, enabling agents to navigate
predefined routes. Core algorithms like A* and Dijkstra's form the basis for
pathfinding, while techniques like Bezier curves and spline models ensure
smoother trajectories. In advanced simulations, such as in Cities Skylines II,
pathfinding is not purely proximity-based but instead relies on a cost model
that considers multiple factors like time, comfort, and financial costs.
Agents dynamically adjust their paths based on real-time conditions, such as
traffic jams, accidents, or roadblocks, optimizing routes accordingly [3].
This approach moves beyond basic pathfinding, incorporating road hierarchy and
lane changes to improve traffic flow and responsiveness to unforeseen events.

2.2 Agent-Based Modeling and Behavior
Agent-based modeling [7] (ABM) treats each vehicle as an autonomous agent
capable of individual decision-making. ABM frameworks simulate interactions
among agents, incorporating factors such as speed, acceleration, and proximity
to other vehicles. Behavioral models, including rule-based systems and finite-
state machines, guide agent actions based on environmental conditions.

2.3 Game Theory in Traffic Simulations
Game theory [8] provides a framework for understanding the strategic
interactions between agents, offering valuable insights into cooperation and
competition within traffic systems. Concepts such as Nash equilibrium and
payoff matrices are employed to model behaviors such as merging, yielding, and
conflict resolution at intersections, ultimately contributing to more
realistic and coordinated interactions among agents. These approaches are
discussed in detail in [9], [10], [6], and [11].

Rijken Julian

DAE - Graduation work 2024-2025 16/78

3. Relevant Frameworks and Case Studies

3.1 Open-World Traffic Simulations
Games such as Grand Theft Auto (GTA) and Cities Skylines showcase diverse
approaches to traffic simulation. While GTA emphasizes immersive, physics-
based vehicular dynamics, Cities Skylines [12] focuses on systemic traffic
flow management and urban planning. The distinction between physics-based
simulations, which add realism to vehicular interactions, and more simplified,
attached models that reduce computational effort is important here. As
discussed in “4.2 Physics-Based and Attached Models” the hybrid approach to
traffic simulation in these games blends elements of both methods to achieve a
balance between realism and computational efficiency.

3.2 Intersection Design and Traffic Flow Analysis
Intersection behavior is critical in both real-world and game traffic systems.
Studies on uncontrolled, stop-controlled, yield-controlled, and signalized
intersections provide a basis for modeling decision-making processes and
optimizing flow. For instance, Champion [9] discuss coordination mechanisms in
traffic simulations applicable to uncontrolled intersections, while Cortés-
Berrueco [10] analyze stop-controlled intersections using game theory.
Lahdenranta [6] provides insights into behavior-based models for yield-
controlled intersections, and Mandiau [11] explore decision-making processes
at signalized intersections.

4. Overview of Tools and Techniques

4.1 FOSS Solutions and Proprietary Systems
Free and open-source software (FOSS) [13] offers accessible and customizable
tools for traffic simulation. However, these solutions often lack specialized
features tailored for gaming applications. For instance, SUMO (Simulation of
Urban Mobility) [2] is a prominent FOSS tool used for real-world traffic
simulations, but it may not fully meet the specific needs of game developers.

On the other hand, proprietary systems provide advanced capabilities and
comprehensive support, albeit at a higher cost. These systems are often more
feature-rich and user-friendly, making them attractive to developers who
require robust and reliable solutions. Examples include various traffic
simulation packages available on the Unity Asset Store and Epic Games' Fab

Rijken Julian

DAE - Graduation work 2024-2025 17/78

platform. However, the high cost and licensing restrictions of proprietary
systems can limit their adoption, especially among independent developers.
Consider, for instance, the Intelligent Traffic System (iTS), which is
utilized by Lahdenranta in their study [6].

Epic Games' ZoneGraphs [14] is an example of a proprietary system that offers
sophisticated traffic simulation capabilities. ZoneGraphs allows for the
creation of detailed and dynamic traffic systems within the Unreal Engine,
providing a high level of control and realism. This system is particularly
useful for developers looking to implement complex traffic behaviors and
interactions in their games.

4.2 Physics-Based and Attached Models
Physics-based simulations significantly enhance realism in physical player
interactions, making them particularly suitable for applications such as Grand
Theft Auto (GTA) or Euro Truck Simulator, where the player assumes the role of
a driver. In contrast, attached models, which keep agents attached to the road
network at all times, require less computational effort because they do not
simulate the physical interactions of each agent. These agents simply follow
the road network in a predefined manner, but this approach lacks the same
level of realism in terms of physical interaction, for example, with a player-
controlled vehicle, as seen in Cities Skylines [3].

The distinction between physics-based and simplified approaches is not always
rigid. Many systems adopt a hybrid approach. For instance, GTA employs
physics-based vehicle simulations to enable dynamic interactions, such as
collisions involving the player. However, when the player is flying at high
altitudes, detailed simulations of individual vehicles are unnecessary, and
computational resources are likely optimized by reducing simulation fidelity.
Conversely, in Cities Skylines, vehicles typically follow abstracted, path-
based rules constrained to the road network. In Cities Skylines II, vehicles
may switch to basic physics simulations under specific conditions, such as
during incidents, introducing a layer of emergent behavior, as described in
the "Traffic Accidents" section of the Development Diary #2: Traffic AI [12].

Notably, the nuanced interplay between physics-based and simplified
simulations has received limited attention in the existing literature. This
observation is based on my personal experience, having extensively played the
GTA series for over 3,000 hours, coupled with an analysis of how these systems
adapt to player proximity and interaction.

Rijken Julian

DAE - Graduation work 2024-2025 18/78

4.3 Existing Studies on Traffic Dynamics
The study of traffic dynamics has been a subject of research for several
decades, with various approaches to modeling and simulating vehicular movement
and interactions. Existing studies highlight the use of multi-agent systems,
game theory, and decision-making models to improve traffic simulation and
management.

Multi-Agent Systems and Game Theory in Traffic Simulation
One prominent approach to modeling traffic dynamics is through the use of
multi-agent systems, as explored by Champion in [9]. Their work investigates
coordination mechanisms among agents using game theory to optimize traffic
flow and reduce congestion. Similarly, Cortés-Berrueco [10] discuss the
application of traffic games to model freeway dynamics, where vehicles act as
autonomous agents making strategic decisions to improve overall efficiency.

Decision-Making and Behavioral Models
Decision-making is another critical aspect of traffic simulation. Lahdenranta
[6] provides insights into behavior-based models used in intersections,
emphasizing the role of artificial intelligence (AI) in urban traffic
simulation. Mandiau [11] extend this idea by presenting a behavior-based
coordination method based on decision matrices for agents within an urban
traffic environment. These studies illustrate the application of AI to
facilitate effective traffic management and decision-making among vehicles.

Wikipedia and Media Perspectives
Additionally, platforms like Wikipedia provide general overviews of AI in
video games [4] and traffic simulation [5], which serve as accessible
resources to understand broader concepts in the field. Meanwhile, popular
media such as YouTube videos [15] and [16] offer content that discusses real-
world traffic issues, phantom traffic jams, and the functioning of traffic
signals, contributing to public awareness and interest in traffic dynamics.

In summary, the existing body of research on traffic dynamics combines
theoretical models using multi-agent systems and game theory with practical
implementations in gaming and simulation environments. These efforts continue
to evolve as they integrate real-time computational solutions and user
interactions to better understand and manage urban mobility.

Rijken Julian

DAE - Graduation work 2024-2025 19/78

Case Study

1. Introduction
This case study will focus on the development of a physics-based traffic
simulation tailored specifically for use in games. Traffic simulations
encompass a broad range of concepts, with numerous nuanced decisions shaping
their design and implementation. Given that the simulation is created for a
gaming environment, Unity has been selected as the testing platform. The
primary reason for Unity is the engine’s component-based architecture which is
preferred to separate the simulation into different parts, over a more
inheritance-based system like Unreal Engine. Unity also supports in-engine
recording, which is great for experiments and also has by far the largest user
base allowing most developers to understand the engine specific concepts
explained in this study.

Traffic simulation is a very broad topic. This paper specifically focuses on
the agent and traffic rules with the focus on agent path following and
intersections. The case study will explore in depth the decisions an agent has
to make to stay on a path with the least deviation. Agents must also
communicate with each other to avoid collisions, especially when it comes to
intersections.

Figure 1. Example of how the traffic system is created by separating it into smaller

components.

Rijken Julian

DAE - Graduation work 2024-2025 20/78

2 Road Network
In any traffic simulation, the road network is a key element. Roads must be
modeled in such a way they can represent various types of infrastructure, such
as highways, intersections, and residential streets.

2.1 Existing Systems
Firstly, I would like to highlight a few examples of how other systems define
their road network.

Unreal Engine Zone Graphs [14] [17]
Different simulations have various implementations. For instance, Unreal
Engine makes use of Zone Graphs [14] to create the City Sample Project for
Unreal Engine [18]

Figure 2: A top-down preview of Unreal Engine Zone Graphs with colors indicating road
size.

iTS
Karl Lahdenranta describes an intelligent traffic system (iTS) [19]. The
system stores lane and connector data in the so called "iTS Main Manager"
script, which handles information such as speed limits, lane density, width,
and vehicle restrictions. Lanes are represented as lists of points and are
designed. Connectors help link lanes and enable overtaking.

Rijken Julian

DAE - Graduation work 2024-2025 21/78

SUMO (Simulation of Urban Mobility) [2]
Road network information is stored in an XML-based file format called a
network file. This file typically has a .net.xml extension and represents all
relevant aspects of the road network, including roads, intersections, lanes,
traffic signals, and connections between these elements.

The network itself sill comes down to a list of nodes with a lot of specific
information, more can be found about SUMO’s road network system on their
website “SUMO docs – PlainXML” [20].

Figure 3. net file opened in sumo-gui.
It shows the map of the German city

Eichstätt. Sources from SUMO
documentation [21].

Clara [22]
Clara, another opensource solution grounded in Unreal Engine, which is used
for (e.g. learning driving policies, training perception algorithms, etc.).
The road network in Clara is defined using ASAM OpenDRIVE® [23]. Like SUMO
this uses the xml format to store road information. The system is once again
devised of nodes, links and roads.

2.2 Proposed Methodology
The systems discussed above demonstrate various approaches to defining road
networks in traffic simulations. When we inspect them, they all come down to a
network of nodes that are connected in various ways. They are surrounded and
grouped by connections and roads. To conduct the tests in this paper, a
simplified method is employed. The primary objective is to examine the
differences between agent behaviors and adherence to traffic rules. To achieve
this, the road network is constructed using a straightforward structure based
on segments and nodes.

Rijken Julian

DAE - Graduation work 2024-2025 22/78

Components of the Simplified Network:

1. Nodes:
Nodes represent the fundamental points in the network. Each agent
navigates from one node to the next, forming the basis for path-
following behavior. These nodes act as waypoints that guide vehicle
movement.

2. Segments:
Segments are defined as a series of connected nodes. Each segment
corresponds to a distinct road or pathway. This segmentation makes it
easier to differentiate between various road types and facilitates the
modular design of the network.

3. Connections:
Connections define the relationship and direction between segments. They
allow segments to join, split, or transition seamlessly, providing the
flexibility needed to model intersections, merges, and other complex
road structures.

By using this simplified method, the paper emphasizes the core mechanics of
traffic simulation while providing a customizable framework for testing agent
behaviors. However, the manual nature of this approach highlights a trade-off
between simplicity and efficiency when compared to automated systems like Zone
Graphs.

Figure 4: An example of the nodes laid out over simple road tile models by Kenney
[24]. These two segments, going in opposite directions, are used as a test ground for

the path following part of this case study.

Rijken Julian

DAE - Graduation work 2024-2025 23/78

Figure 5. Illustration of the
connectivity between different

segments creating an
intersection. The endpoint of

each segment is denoted by white
text, while the starting point is
indicated by black text. Segments
are connected by a yellow line.

As a quality-of-life feature, the road network in Unity that was developed
includes a functionality to restructure the network with the click of a
button. This automatically updates all waypoint connections and adjusts their
names, accordingly, significantly reducing manual labor. Additionally, I
incorporated a feature that allows all waypoints to be snapped to the floor
with a slight offset. This is a crucial element, as vehicles must be
positioned on the path. Since the path can also change in height, it is
important that the heights of both the vehicle’s body and the waypoints are
aligned.

While Unity offers splines through a package, I have chosen not to use this
feature in this instance, as my focus is on the agents rather than the road
network itself. However, the spline package would be ideal for future work,
particularly in creating a smoother and more refined road network.

This approach prioritizes flexibility and customization but comes at the cost
of increased manual effort compared to more automated systems, such as Unreal
Engine's Zone Graphs. By using this method, we ensure a controlled environment
that facilitates a deeper exploration of agent dynamics and rule compliance.
The system is not stored in a specific file format and a possibility for
future work would be saving the road network in a specific file format

3 Physics-Based Testing
In Section “4.2 Physics-Based and Attached Models” I discussed the
distinctions between physics-based and attached modes, emphasizing that the
choice between them is not always clear-cut. While both models have their
respective advantages, this paper focuses on agent and traffic decision-making
and does not delve deeply into the impact of using one model over the other.
In general, many rules can be implemented through different methods, yielding
similar results.

Rijken Julian

DAE - Graduation work 2024-2025 24/78

Figure 6. Example of an
agent driving up and down
a slope, demonstrating the
use of a physics-based
vehicle model and the
suspension system in

action.

For the purposes of this research, and in alignment with my interest in open-
world games as discussed in the Preface chapter, will adopt a physics-based
system. This entails that the vehicle is fully simulated at all times, which
allows for more realistic interactions between the player-controlled vehicle
and AI vehicles within the road network. Rather than putting the vehicle on
tracks, as shown in “Development Diary #2: Traffic AI” [3], we instead
interface with our physics based agent via the following input parameters:

• SteerWheelInput: Ranges from (-1.0, 1.0), controlling the steering of
the vehicle. (Acts as the steering wheel)

• ThrottleInput: Ranges from (0.0, 1.0), regulating the vehicle's
acceleration. (Acts as the throttle paddle)

• BrakeInput: Ranges from (0.0, 1.0), determining the vehicle's
deceleration. (Acts as the brake paddle)

These parameters are managed by a car controller class, which oversees the
vehicle’s inputs. The AI, which operates separately from the controller,
adjusts these input values within predefined limits, ensuring that the code
remains modular and adaptable. This separation of concerns facilitates the
development of a more generic system that can easily be expanded or modified.

4. Agent Steering
In the context of traffic simulation for games, path following is a
foundational concept. Whether for a simple car navigating a road, or complex
interactions between thousands of vehicles, every traffic simulation must
address how vehicles follow designated paths. The challenge lies not only in
the pathfinding process itself but also in the real-time decision-making that
agents must make based on traffic conditions, obstacles, and environmental
factors.

Rijken Julian

DAE - Graduation work 2024-2025 25/78

4.1 Path Alignment Using PID
As discussed in 2.2, “Physics-Based testing” we will make use of a physics
based system which, unlike in an attached system, does not feature perfect
alignment as we do not simply move the agent along a spline [25]. This creates
flexibility in vehicle movement and requires the system to replicate agent
steering behavior as seen in the "Development Diary #2: Traffic AI," [3].

Our simulated vehicle has many different parameters acting upon it. For
instance, the steering is not instant as the steering wheel takes time to
rotate toward the desired rotation, together with additional factors like the
car sliding or going off course because of other physical objects. This makes
our situation quite difficult, and we therefore require a solution to keep the
car on track from any given position.

The challenge we face when using a physics-based agent is keeping the agent as
close to the path as possible just by changing the inputs of the vehicle.
Based on secondary research, there is little to be found about this topic when
looking for solutions created for games. However, this concept is well
researched outside of traffic simulations based on autonomous vehicles.

This brings us to PID-Control [26]. The Proportional-Integral-Derivative (PID)
controller is a widely used feedback control system that aims to continuously
adjust the inputs of a system in order to reach and maintain a desired target.
In the context of a traffic simulation, specifically for path following, PID-
control can be used to keep an agent (vehicle) on the path despite the
complexities of real-world physics, such as road curvature, obstacles, and the
natural delay in vehicle response.

When applied to a physics-based vehicle model in a traffic simulation, PID-
Control works as follows:

● Error: The perpendicular distance the agent is from the path.
● Accumulated Error: The accumulated error over time used for I.

● P - Proportional: Acts as a spring, pulling the car back to the path.
● I - Integral: Acts as a memory, reducing the steady state error.
● D - Derivative: Acts as a damper, reducing the oscillation of the car.

The following results will highlight how the Proportional and Derivative part
of the formula affects the trajectory of the agent.

Rijken Julian

DAE - Graduation work 2024-2025 26/78

P (Proportional) & D (Derivative) - Control Results
using 10 m/s max speed, with a non-continuous two-part road

Figure 7. Only P with
low proportional gain.

P = 0.2
D = 0.0
I = 0.0

Figure 8. Only P with
medium proportional gain

P = 0.7
D = 0.0
I = 0.0

Figure 9. Only P with
high proportional gain

P = 2.0
D = 0.0
I = 0.0

Figure 10. P and D with
low derivative gain.

P = 0.2
D = 0.05
I = 0.0

Figure 11. P and D with
ideal derivative gain

P = 0.7
D = 0.3
I = 0.0

Figure 12. P and D with
high derivative gain

P = 2.0
D = 2.0
I = 0.0

Rijken Julian

DAE - Graduation work 2024-2025 27/78

These tests demonstrate that finding the appropriate PID values is crucial for
minimizing an agent's deviation while driving. Each of these tests adjusts the
steering value, as described in section 2.2 “Physics-Based Testing." When we
modify the proportional (P), integral (I), or derivative (D) gain, we
essentially multiply the steering value by the corresponding gain and use it
as the vehicle's steering input. It is important to note that the error value
is calculated based on the perpendicular distance to the path, meaning these
values are effective only in a world with realistic units. Similarly, the
steering value is adjusted between the range of [-1,1], and the AI controller
does not require any information about the vehicle’s steering angle. However,
such information could be important when dealing with different types of
vehicles. For future changes to the system, PID should ideally be calculated
from the steering angle and not the steering alpha [-1,1].

Now that we have a clear understanding of how to steer the car, we are left to
consider the role of the I (Integral) component in the equation. In brief,
this component addresses past accumulated errors to eliminate steady-state
offsets. If the agent is influenced by external factors, such as being pushed
by another vehicle or having a broken wheel that causes it to tilt left, the
Integral component accumulates the error over time. This enables the agent to
steer back toward the correct path.

In order to showcase the effect of the accumulated error the back wheel has
been broken of this poor little agent. It can now serve as the perfect example
for our testing.

Figure 13. Example of an agent with a broken back wheel forcing the agent to deviate
from the path.

Rijken Julian

DAE - Graduation work 2024-2025 28/78

I (Integral) - Control Results
using 10m/s max speed & broken wheels

Figure 14. Showing I with
no integral gain.

P = 0.7
D = 0.3
I = 0.0

Figure 15. Showing I with
high integral gain.

P = 0.7
D = 0.3
I = 2.0

Figure 16. Showing I with
ideal integral gain.

P = 0.7
D = 0.3
I = 2.0

The vehicle simultaneously exhibits advanced, physics-based behavior with
distinct characteristics, such as a steering curve that dynamically adjusts
with speed and a gradual response when accelerating or decelerating. These
behaviors, while sophisticated, can introduce challenges in maintaining
stability, which the integral component of our PID formula effectively
addresses by compensating for accumulated errors over time.

Figure 17. Screenshot from the physics agent behavior component. Example of how the
agent has advanced parameters that might make it behave in a difficult to predict

fashion.

Rijken Julian

DAE - Graduation work 2024-2025 29/78

4.2 Path Alignment Correction
A significant limitation of the system is that the agent's steering decisions
are based solely on which side of the path it is positioned, without
considering its current orientation. As a result, the agent often takes an
unnecessarily long route to re-align with the path.

Figure 18. Showing Issue.

Illustrating how the agent follows a
longer path due to its inability to
account for its own orientation.

Another notable issue arises when the agent strays significantly from the
designated path. The instability occurs due to the behavior of the PID-Control
system. Typically, a PID controller operates on a direct error value, which
drives the system toward the target or causes overshooting depending on the
control strength. However, in this scenario, the agent's continuous steering
actions cause the error value to increase even as the PID controller applies
corrective inputs. This dynamic leads to further instability instead of
reducing the error. This is also briefly touched upon in a video by
AerospaceControlsLab at 1:29, but with no further solution. [27]

Figure 19. Showing Issue.
Shows how the agent becomes unstable
when it deviates too far from the

path.

This issue is likely because in most cases, just a PID controller is good
enough. However, the simulation developed for this paper aims to have the
agent recover itself from any given position and therefor introduces the
following error corrections:

● Backwards Correction. The correction applied to the agent that overrides
the PID controller when the agent's orientation is > 90° in either
direction from the segment direction.

● Instability Correction. The correction that is applied when the agent is
more than a set distance away from the path. Instead of PID the system
simply steers the agent in the direction of the sample position.

Rijken Julian

DAE - Graduation work 2024-2025 30/78

Backwards Correction Results
using 10m/s max speed - 5.0 Direction Error Gain

Figure 20.

Showing Without & With
Backwards Correction.

Shows how the agent switches
between Backwards Correction and

PID.

The backward correction operates by calculating the angle between the path
direction and the agent's forward direction. It is important to note that this
method does not use PID control, as the steering angle is not a continuous
error value like the agent's distance from the path. Consequently, only the
proportional (P) component of the equation is applied, scaling the angle by
dividing it by 360 and multiplying by a directional error gain.

At first glance, this may appear to be a simpler solution than PID. However,
it merely adjusts the vehicle's direction. When following a path, both the
direction and position of the vehicle must be updated simultaneously to ensure
accurate path adherence.

Instability Correction Results
using 10m/s max speed - 5.0 Direction Error Gain

Figure 21. Showing Without
Instability Correction.

Shows how the agent becomes
unstable when it deviates too far
from the path. Similar to fig 17.

Figure 22. Showing With
Instability Correction.

Shows how the agent starts outside
the IC distance of 5 meters. And
switches to PID (Shown in red).

Rijken Julian

DAE - Graduation work 2024-2025 31/78

The results of the instability control demonstrate how the agent can correct
itself and realign with the path before becoming unstable. The following
formula is employed to steer toward a direction, where 𝑑𝑑 serves as the error
direction gain.

Figure 23. Formula used to calculate the steering input.

The same formula is utilized for both instability and backward correction.
Notably, this approach is applied exclusively in 2D, as steering the agent in
the vertical direction is not feasible. In the implementation, the process is
further simplified by using Unity's Vector2.SignedAngle() method and dividing
the result by 360.0f. This method does not rely on arctan2 and is used purely
as a matter of preference.

private float GetSteerInputToDirection(Vector3 direction) {
 Vector2 directionToPath = new Vector2(direction.x, direction.z).normalized;
 Vector2 agentDirection = new Vector2(_agent.Forward.x,
_agent.Forward.z).normalized;
 float angleError = Vector2.SignedAngle(directionToPath, agentDirection) / 360.0f;
 return angleError * _settings.DirectionError_Gain;
}

Figure 24. Formula used of directional steering implemented in C# using Unity

var sample = _segment.GetSampleFromPosition(_agent.Position);
float error = sample.SignedDistanceFromPath;

float p = _settings.Proportional_Gain * error;

float errorRate = Vector3.Dot(_agent.Velocity, sample.DirectionRight);
float d = _settings.Derivative_Gain * errorRate;

_accumulatedError += error * Time.deltaTime;
_accumulatedError = Mathf.Clamp(_accumulatedError, -_settings.Integral_Limit,
_settings.Integral_Limit);
float i = _settings.Integral_Gain * _accumulatedError;

_agent.SteerWheelInput = p + i + d;

Figure 25. Snippet of PID implementation for agent in C# using Unity

A formula for PID can be found in the appendix.

Rijken Julian

DAE - Graduation work 2024-2025 32/78

This concludes the basic steering aspect of this case study. In summary, PID-
Control is highly effective for guiding dynamic variables toward a target,
akin to steering a car along a desired path. However, certain modifications
are necessary to enable the agent to recover even when it deviates
significantly from the path. To address this, I introduced instability and
backward correction using a simple formula that relies solely on the
proportional component and steers based on direction rather than strictly
following a path. This combination results in a system capable of robust path-
following.

That said, this does not encompass advanced concepts such as corner cutting or
lookahead strategies for minimizing path deviation, which remain areas for
further exploration.

4.3 Path Deviation Optimization and Smoothing
With the agent now capable of following a path and aligning itself to
designated points along it, the next objective is to evaluate its performance
in navigating more complex paths. The primary aim is to minimize the agent's
deviation from the path, defined as the perpendicular distance between the
agent and the path at any given point.

In scenarios involving sharp corners, the agent consistently overshoots these
turns due to its inability to anticipate upcoming changes in the path's
trajectory. This limitation stems from the fact that the agent’s current
steering calculations only consider its immediate position relative to the
path, without accounting for the curvature or direction of the path ahead.

Figure 26.
Visualization of agent following the
path and overshooting the corners.
Notably the agent skips the last

corner as he simply overshoots on to
another part of the path.

Rijken Julian

DAE - Graduation work 2024-2025 33/78

One solution to this issue is the use of a technique called lookahead.
Lookahead takes many forms and similar to PID has many different use cases.
When we talk about lookahead we practically talk about calculating the future
value based on its change over time.

Figure 27. Formula for calculating lookahead

Lookahead is used in many other scenarios, for instance moving a camera to
follow a player character. Many side scrollers incorporate this concept to
allow the player to look a bit ahead of where the character is moving. In our
case we use it to sample a point further along our path. Our agent has access
to the current distance along the path, so in order to get the position along
the path in the future we simply calculate the lookahead value based on the
vehicle's forward speed multiplied by the lookahead time.

float LookaheadDistance = _agent.CarBehaviour.ForwardSpeed *
_agent.Settings.LookaheadTime;
_futureSample =
 _agent.CurrentSegment.SampleFromDistance(_agent.CurrentSample.DistanceAlongSegment
+ LookaheadDistance);

Figure 28. Snippet of LAT implementation for agent in C# using Unity

Now that we have a future sample, we can steer the agent based on this future
position rather than the current one. However, this does not fully resolve our
smoothing challenges. While the agent begins aligning with the path ahead of
time, it produces the unintended effect of deviating from the path before
reaching the corner.

 Figure 29. Unwanted deviation
Figure 30. Interpolating solution

Rijken Julian

DAE - Graduation work 2024-2025 34/78

4.4 Proposed Methodology for Path Smoothing
Current to Future Sample interpolation.
In order to properly smooth out the motion with maximum control we will take a
page out of splines.

Figure 31.
Showing quadratic Bezier curve where t = 0.5,

visualized in GeoGebra.

A quadratic Bezier curve is a parametric
curve defined by three control points: A, B,

and C. The curve is generated through a
process of linear interpolation applied

recursively between these points,
parameterized by a value t, where t ∈ [0,1].
The interpolation process ensures smooth

transitions along the curve as t progresses.

The way we smooth our path is very similar to the way quadratic Bezier curves
work with one important distinction:

Unlike traditional Bezier curves, we do not require interpolation between the
control points (A, B, and C). Instead, we define Q0 as the current path sample
of the agent and Q1 as the future sample selected based on the lookahead time.
We then introduce another sample, which we refer to as the interpolated
sample. This sample represents the direction from Q0 to Q1, with its position
always centered between Q0 and Q1. This effectively creates a continuous curve
over the path, allowing the agent to smoothly navigate corners.

This approach shares similarities with splines, and I highly recommend
watching "The Continuity of Splines" by F. Holmér [25], which inspired much of
the methodology of this smoothing technique, for the interpolating between
points similar to how Bezier curves work and are explained in the video.

Figure 32.

Visualization of the agent, with the
current sample represented by the small

dark blue ball, the yellow ball
indicating the interpolated sample, and
the cyan ball representing the future
sample. The agent is shown cutting the
corner as it follows the interpolated

sample.

Rijken Julian

DAE - Graduation work 2024-2025 35/78

Deviation Optimization Interpolation Results
deviation measured as perpendicular distance to path over distance

along the path. using 10m/s max speed

Average Deviation = 1.433835m

Figure 33. Showing 0.0 LAT with very direct connection to the path but very abrupt
deviations.

 Average Deviation = 1.006517m

Figure 34. Showing 0.75 LAT allows for some smoothing between the corners. More
deviation is created but with an overall smoother result.

 Average Deviation = 1.16824m

Figure 35. Showing 1.25 LAT creating a very smooth path but. At the cost of accuracy

in return creating even more deviation.

Rijken Julian

DAE - Graduation work 2024-2025 36/78

Figure 36. Visualization of Average Deviation over Lookahead Time showing how

balancing the 2 values is important for minimal deviation.

The results demonstrate a clear improvement in path deviation. It is important
to highlight, however, that path deviation graphs are not the sole criterion
of interest. Our objective is not merely to minimize deviation (although this
serves as a useful indicator), but rather to ensure that the vehicle exhibits
realistic driving behaviors. This is why smoothing plays a crucial role, as
most drivers tend to make minor adjustments when possible.

There is also an argument to be made for eliminating smoothing altogether, on
the grounds that the path itself should be smoothed rather than the agent.
Nonetheless, I conclude that a combination of both approaches is more ideal
and flexible, as it enables the agent to exhibit more realistic behavior
within a less precisely defined road network.

This concludes the discussion on path deviation optimization with constant
speed. The subsequent chapter will focus on speed management, which also plays
a significant role in maintaining the agent's trajectory. It is also crucial
that the agent is capable of steering optimally even without constantly
reducing speed. While additional optimizations are possible, such as allowing
the agent to deviate from the path and counter-steer to improve overall
performance, or optimizing the driving line to enhance speed, these
improvements are outside the scope of this paper and will be addressed as part
of future work. At this stage, we have developed an agent that is suitable for
use in a traffic simulation for a game.

Rijken Julian

DAE - Graduation work 2024-2025 37/78

5. Agent Inertia Management
Now that our agent can steer itself, it’s time to make it brake so that it
does not cause an incident. In the previous tests, the agent accelerated with
the maximum value and simply stopped accelerating once it reached the target
speed of 10 m/s. To make the agent suitable for a traffic simulation, it
requires the minimum functionality of stopping when reaching the end of the
road and matching the speed limit of the road (or slightly less when it comes
to my grandma). Based on my other research, I discovered that the PID
controller I have used for steering the agent toward the centre of the road is
highly effective at correctly adjusting a changing value to align with a
changing target. When it comes to the agent’s speed there are two primary
factors; the speed limit and the stopping point, which is used for keeping
distance from other agents and intersections. An agent requires to drive the
speed limit, but this does not require a direct responds. We therefore use a
proportional gain to reach the target and smooth out the value by moving the
input over time. The other part is making sure when given a position along the
path, the agent is capable of exactly stopping on the path point without
overshooting. This second part is ideal for PID and is very similar to the
steering.

Generic PID controller
To keep code quality up we define a generic PID controller to be used by both
the steering and the brake point power input.

public PIDResult Evaluate(float error, float errorRate, float deltaTime) {
 float p = Settings.ProportionalGain * error;
 float d = Settings.DerivativeGain * errorRate;
 _accumulatedError += error * Settings.IntegralGain * deltaTime;
 _accumulatedError = Mathf.Clamp(_accumulatedError, -Settings.Integral_Limit,
Settings.Integral_Limit);
 float i = _accumulatedError;

 return new PIDResult {
 Proportional = p,
 Integral = i,
 Derivative = d,
 Total = p + i + d
 };
}

Figure 37. Code snippet showing how the PID controller is made generic using an

evaluate function within the PIDController class.

Rijken Julian

DAE - Graduation work 2024-2025 38/78

Another advantage of this is that we can store the settings of the PID in a
struct, we then make this struct [Serializable] so that we can use it in our
agent settings scriptable object, allowing us to create files for the settings
and have saved configurations.

[Serializable]
public struct PIDSettings
{
 [Tooltip("Proportional acts as a spring, pulling the car back to the path")]
 public float ProportionalGain;

 [Tooltip("Integral acts as a memory, reducing the steady state error")]
 public float IntegralGain;

 [Tooltip("Derivative acts as a damper, reducing the oscillation of the car")]
 public float DerivativeGain;

 [Tooltip("Integral saturation limit, to prevent windup")]
 public float Integral_Limit;
}

Figure 38. Code snippet showing a [Serializable] struct for the PID settings

The model employs a realistic framework that simulates the operation of both
the gas and brake pedals, as discussed in Section "3 Physics-Based Testing"
Each pedal's input ranges from [0, 1], reflecting proportional values. To
streamline the output for the PID controller, these two inputs are combined
into a single value ranging from [-1, 1]. In this range, the negative half
represents the brake pedal, while the positive half corresponds to the gas
pedal. This configuration allows the PID controller to adjust the combined
value based on its calculations while preserving the realistic behavior of the
vehicle together with the code composition. Drivers in real life often just
let go of the gas paddle to let the car come to a stop and because our model
is physical and PID just cares about the error change, this phenomenon is
replicated similar to real life. There is also an important distinction to be
made between the two values. As the gas paddle adds a force to the vehicle
based on the torque curve while the brake paddle makes changes to the grip of
the vehicles wheels. This makes it so that the vehicle has different speeds
for slowing down and speeding up.

Rijken Julian

DAE - Graduation work 2024-2025 39/78

Figure 39. Showing
the physical braking

test with full
throttle and full

braking.

Figure 40. An example of a vehicle's inertia shown using Distance & Speed together

with Throttle & Brake. using full brake and throttle based on braking line without PID
control.

As shown in these graphs the agent seems to have a smooth ride based on the
distance but when taking a look at the speed it is clear that the passengers
experience a very rough ride. This is a result of full throttle and full
braking.

Figure 41. Example of
agent full braking
making the car tilt

forward due to inertia.

0

5

10

15

20

25

30

35

Throttle Input Break Input Distance Speed

Rijken Julian

DAE - Graduation work 2024-2025 40/78

5.1 Speed limit
Roads are governed by speed limits, which agents in traffic simulations must
follow intelligently. In real-world scenarios, drivers transitioning between
speed zones typically do not abruptly reduce their speed by slamming on the
brakes. Instead, they decelerate gradually until they comply with the new
speed limit. The objective in the simulation is to replicate this behavior by
ensuring that the agent adheres to speed limits in a smooth and realistic
manner. The proposed method involves utilizing a Proportional Controller. This
approach calculates the proportional value as the difference between the
target speed and the current speed along the sampled direction. By multiplying
this value by a gain factor, the controller ensures that the target speed is
achieved. This method is simple and does not require a derivative component,
as the speed in this context is not a moving value.

𝑃𝑃 = 𝐾𝐾𝑝𝑝 ⋅ �𝑣𝑣target − 𝑣𝑣current�

Figure 42. Formula for calculating speed limit proportional input

The code snippet below shows the final calculation for the speed limit. More
about the smoothing part is discussed below.

private void UpdateSpeedLimitInput()
{
 // Calculate the desire input to reach the target speedLimit
 float speedAlongDirection = Vector3.Dot(_agent.CarBehaviour.Velocity,
_agent.CurrentSample.DirectionForward);
 float gain = speedAlongDirection > _agent.CurrentSample.SpeedLimit ?
_agent.Settings.SpeedLimitBrakeProportionalGain :
_agent.Settings.SpeedLimitThrottleProportionalGain;
 float targetSpeedLimitInput = (_agent.CurrentSample.SpeedLimit -
speedAlongDirection) * gain;
 _speedLimitInput = Mathf.MoveTowards(_speedLimitInput, targetSpeedLimitInput,
_agent.Settings.SpeedLimitInputMaxCangeRate * Time.deltaTime);
}

Figure 43. Code snippet showing the final calculation for speed limit.

The results below show how the agent fairs with different gain values. It is
important to note that it’s not important for the agent to immediately reach
the max speed. It is much more important that the agent does so in a smooth
matter.

Rijken Julian

DAE - Graduation work 2024-2025 41/78

Speed Limit Proportional Gain Test Results
Throttle & Brake Inputs over time [0,1]. Speed m/s over time [0,25].

Same gain used for both throttle and brake input.

Figure 44. Showing the physical speed limit test used for the graphs below.

Figure 45. Speed limit
test with gain set to:

G = 0.04

Figure 46. Speed limit
test with gain set to:

G = 0.15

Figure 47. Speed limit
test with gain set to:

G = 0.5

0
0,2
0,4
0,6
0,8
1

0
5

10
15
20
25

Throttle Input Break Input

Speed Limit Speed

0
0,2
0,4
0,6
0,8
1

0
5

10
15
20
25

Throttle Input Break Input

Speed Limit Speed

0
0,2
0,4
0,6
0,8
1

0
5

10
15
20
25

Throttle Input Break Input

Speed Limit Speed

Rijken Julian

DAE - Graduation work 2024-2025 42/78

These results show that we can make our agent follow a target speed by using a
proportional value. This creates a smooth out braking and throttle response so
that the agent slowly decreases input when getting closer to the target speed.
There is still quite a shock when the speed is far away from the target speed.
We do want our agent to give a proportional input, but we still want to smooth
out the sudden changes in input. A proposed method is to similarly to "4.3
Path Deviation Optimization and Smoothing” is to smooth out the final input.
Ideally the smoothing created when nearing the target speed is preserved. We
can apply the smoothing by moving the resulting input value and allowing the
value to only move with a set maximum delta. This allows for a slow gradual
change in input to be preserved but limits the large abrupt changes. For this
we use a Unity function called Mathf.MoveTowards(), which is implemented with
the following formula:

Figure 48. Example of move towards formula used for limiting the change in input for

the speed limit calculation

Speed Limit Smoothing Results
Throttle & Brake Inputs over time [0,1]. Speed m/s over time [0,25].

Using P = 0.15 for throttle and P = 0.05 for brake input gain.
Blocking input from changing at a rate faster than 1.5 per second

showing effect at the blue pilers.

Figure 49. Graph showing the speed limit smoothing results.

0

0,2

0,4

0,6

0,8

1

0

5

10

15

20

25

Throttle Input Break Input Speed Limit Speed

Rijken Julian

DAE - Graduation work 2024-2025 43/78

5.2 Stop Point
The stop point is simply defined as a position. The agent will regulate the
brake and throttle controls accordingly so that the vehicle comes to a stop
precisely at the stop point. This method is very similar to the steering from
“4.1 Path Alignment Using PID” as we are again moving the vehicle to a point,
only this time in the straight direction instead of sideways and using the
throttle and brake input instead of the steering input. Therefor this can be
accomplished using a PID-controller. In this scenario we don’t ever want the
agent to overshoot like he might when it comes to steering. This is why it’s
important to correctly tune the PID-controller. The following test results
will show how different P&D values compare to creating a smooth stopping
experience.

Stop Point Results
Throttle & Brake Inputs over time [0,1]. Speed m/s over time [0,25]

Figure 50. Showing a top-down
view of the test scene for

the stop point test.

Figure 51. Showing braking
test with gain set to:

P = 0.05
D = 0.15

Figure 52. Showing braking
test with gain set to:

P = 0.1
D = 0.2

Figure 53. Showing braking
test with gain set to:

P = 0.6
D = 0.8

0
0,2
0,4
0,6
0,8
1

0
5

10
15
20
25

Throttle Input Break Input Speed

0
0,2
0,4
0,6
0,8
1

0
5

10
15
20
25

Throttle Input Break Input Speed

0
0,2
0,4
0,6
0,8
1

0
5

10
15
20
25

Throttle Input Break Input Speed

Rijken Julian

DAE - Graduation work 2024-2025 44/78

The stop point PID controller uses the signed distance based on the forward
direction vector of the agent and the direction towards the stop point. The
error rate is defined as the velocity of the agent projected in the direction
towards the stop point.

// Calculate the input to reach the stop point
Vector3 fromPosition = new Vector3(_agent.CarBehaviour.Position.x, 0.0f,
_agent.CarBehaviour.Position.z);
Vector3 toPosition = new Vector3(_stopPoint.x, 0.0f, _stopPoint.z);
Vector3 directionToStopPoint = (toPosition - fromPosition).normalized;

// Calculate the error
float directionRelativeToAgentForward =
Vector3.Dot(_agent.CarBehaviour.ForwardPlanner, directionToStopPoint);
float distanceToStopPoint = Vector3.Distance(_agent.CarBehaviour.Position,
_stopPoint);
float signedDistanceToStopPoint = distanceToStopPoint *
Mathf.Sign(directionRelativeToAgentForward);
float error = signedDistanceToStopPoint;

// Calculate the error rate
float velocityAlongDirectionToStopPoint = Vector3.Dot(_agent.CarBehaviour.Velocity,
directionToStopPoint);
float errorRate = -velocityAlongDirectionToStopPoint;

// Evaluate the PID controller
_stopPointInput = _stopPointPIDController.Evaluate(error, errorRate,
Time.deltaTime).Total;

Figure 54. Code snippet for calculating the stop point input value

These PID values are currently manually tested and compared but there are many
algorithms that can help you tune these values to be exactly correct in moving
your value towards the target.

Rijken Julian

DAE - Graduation work 2024-2025 45/78

5.3 Sharp corners
A road network should ideally consist of roads that are governed by speed
limits that comply with the sharpness of the corners to avoid agents from
overshooting. However, not all road systems are perfectly set up and even in
real life there is often a suggested speed sign for a corner as the speed
limit does not always represent how fast you should take a corner.

When the deviation tests were performed in “4.3 Path Deviation Optimization
and Smoothing” the agent drove at a constant speed of 10 m/s. When that same
scene is adjusted to include speed limits the result is majorly improved,
especially in the first sharp corner, at the cost of manual work for placing
the speed limits.

Speed Limit Deviation Results
Speed limit adjusted for corners.

Figure 55. Top-down view of deviation

results with speed limits.

Average Deviation = 0.505

Manually adjusting the corners is not ideal and another method is calculating
the danger level for the upcoming corner by sampling the angle of the corner
ahead in the path. This paper, however, does not further explore these
additions as they are not mandatory. Hopefully this can be addressed as part
of future work.

Figure 56. Example of the
types of danger values

would be included if such a
system would be implemented

0
0,2
0,4
0,6
0,8
1

0

5

10

15

Throttle Input Break Input Speed Limit Speed

Rijken Julian

DAE - Graduation work 2024-2025 46/78

5.4 Combined Input
The agent can adjust its speed to adhere to the speed limit while
simultaneously driving towards a designated stop point. In a traffic
simulation, however, it is essential for the agent to perform both tasks
concurrently. Therefore, the results of these two inputs are combined.

The process of combining these inputs was developed through straightforward
reasoning. Both the speed limit and the stop point serve to restrict the
agent's acceleration. The throttle input is determined by selecting the
minimum value between the two inputs, as the speed limit should establish the
maximum permissible throttle. Conversely, the brake input is determined by
selecting the maximum value, ensuring that the vehicle consistently
decelerates to a complete stop, whether prompted by the speed limit or the
stop point.

𝐼𝐼 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐01�min�𝐼𝐼𝑙𝑙 , 𝐼𝐼𝑝𝑝�� − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐01�max�−𝐼𝐼𝑙𝑙 ,−𝐼𝐼𝑝𝑝��

6 Obstacle Avoidance
Having developed the necessary components to enable our agent to regulate
inputs for speed control, we can now focus on the next step: collision
avoidance. The agent must be capable of responding to potential obstacles of
various types, such as other agents or debris on the road. Currently, the
agent does not account for obstacles in its path, resulting in collisions.

Figure 57. Agent crashing into a pile of boxes.

Rijken Julian

DAE - Graduation work 2024-2025 47/78

6.1 Directional Front Sensor
To begin with, it is necessary for the agents to detect any obstacles in their
path. Several methods can be employed to achieve this. One potential approach
involves sampling the path and identifying other agents present on the same
road. However, this method does not account for dynamic obstacles beyond the
agents themselves. An alternative solution is to perform a box cast from the
agent's bumper, extending in the direction of the steering angle for a
specified distance. This can be accomplished using Unity's physics system.

Once again to maintain code quality, the sensor is split into a different
component. The biggest reason this is more flexible is that we can attach the
sensor to the front of the vehicle as a different game object, making use of
the transform.

public class Sensor : MonoBehaviour {
 [SerializeField] private Vector2 _size = new Vector2(1.0f, 1.0f);
 [SerializeField] private LayerMask _layerMask = 0;

 public bool Sense(float distance, out RaycastHit hit) {
 return Physics.BoxCast(transform.position, _size, transform.forward, out hit,
transform.rotation, distance, _layerMask);
 }
}

Figure 58. Code snippet of sensor component.

Due to the separation of the sensor, it is easy to use the transform component
to rotate the sensor direction in the direction of the vehicle steering angle,
and to move it slightly to avoid it colliding with the vehicle body.

float steeringAngle = _carBehaviour.SteeringAngleDegrees;
_frontSensor.transform.localRotation = Quaternion.Euler(0.0f, steeringAngle, 0.0f);

Vector3 target = _frontSensor.transform.localPosition;
target.x = steeringAngle * _frontSensorAnglePositionOffset;
_frontSensor.transform.localPosition = target;

_frontSensor.Sense(_frontSensorDistance, out _frontSensorHit);

Figure 59. Code snippet of using sensor component while rotating it towards the

steering angle.

Rijken Julian

DAE - Graduation work 2024-2025 48/78

Directional Front Sensor Corner Navigation Results
One limitation of the current system is its performance in navigating corners.
The code snippet shown in "Figure 57" provides a reasonable solution by
rotating the cast in the steering direction; however, the steering direction
is only the start of the curve. This also does not account for the future
position of the agent as it might change direction. “Figure 60” shows how the
directional front sensor fails to collide with the other agents on the path.

Figure 60. Top-down view of agent driving along a curved path with sensor aimed in the
steering direction. With the red ball representing the stop point. There is an error

shown as the front sensor does not see the box in the center of the path.

Figure 61. Example of agents driving along a curved path. They are not correctly
capable of stopping for each other when there is a sharp corner.

Rijken Julian

DAE - Graduation work 2024-2025 49/78

6.2 Rotational Front Sensor
Another approach would be to check the steering direction of the agent and
predict its future position based on the bicycle kinematic model. One such
method is described in “The kinematic bicycle model: A consistent model for
planning feasible trajectories for autonomous vehicles?” [28] with a detailed
approach in “Kinematic Bicycle Model” by Mario Theers and Mankaran Singh [29].

Figure 62. Showing sensor prediction using the
kinematic bicycle method failing to detect agent

ahead of the path.

_turningRadius = wheelbase / Mathf.Tan(_steeringAngle);
_turningCenter = backWheelCenter - _turningRadius *
backWheelSideways;

Figure 63. Code snippet of calculating the turning

center.

However, it is made clear from “Figure 62” that this simple implementation of
the approach lacks the knowledge of the path which the agent will follow.

6.3 Path Sampling Front Sensor
The agent has access to the path it will follow. This information can be used
to sample points along the path from the car position to be used for collision
avoidance. This method samples points and then performs a box cast between
each of these points.

When the agent has deviated off the path, this sensor might not detect the
trajectory which the agent will follow to get back to the path. The position
of the front sensor will be used as the first sampled point. This allows the
agent to still detect obstacles between it and the path.

The agent has included additional code that can sample points from its current
segment up until the end of the next segment. The agent always has a target
next segment but does not know further what path to take as it does not do any
path finding, only following.

Rijken Julian

DAE - Graduation work 2024-2025 50/78

The number of samples influences the accuracy of this sensor. However,
sampling the path and especially casting between the two samples comes at a
steep performance cost. The front sensor has a setting defining the samples
per meter.

Path Sample Number Results
how sample count affects the accuracy of the path sensor.

Figure 64.

Showing front sensor sampling
path points with samples per

meter set to: 1.0

Figure 65.
Showing front sensor sampling
path points with samples per

meter set to: 0.5

Figure 66.
Showing front sensor sampling
path points with samples per

meter set to: 0.1

It is important to note here that, ideally the number of samples is as low as
possible while still upholding a decent resolution for detecting obstacles
along the path.

One more optimization technique that can be used is removing points based on
how steep the angle is. In “Figure 65” it is made clear that the number of
samples is correct when sampling in the spiral, but when taking a closer look
to the straight sections, it shows that there are an unnecessary number of
samples.

Rijken Julian

DAE - Graduation work 2024-2025 51/78

For this optimization I came up with the following algorithm: It iteratively
removes points, until there are none left to be optimized based on the minimum
angle. This algorithm borrows inspiration from the “Ramer–Douglas–Peucker
algorithm” [30]. Part of future work could be going further into this
optimization.

while (true)
{
 int removedSamples = 0;
 for (int i = 1; i < _samples.Count - 1; i++)
 {
 Vector3 directionToCurrentSample = _samples[i] - _samples[i - 1];
 Vector3 directionToNextSample = _samples[i + 1] - _samples[i];
 float angle = Vector3.Angle(directionToCurrentSample, directionToNextSample);

 if (angle < _minAngle)
 {
 _samples.RemoveAt(i);
 removedSamples++;
 }
 }

 if (removedSamples == 0)
 break;
}

Figure 67. Code snippet of line smoothing algorithm used for the optimization of the

front sensor.

Rijken Julian

DAE - Graduation work 2024-2025 52/78

Path Sample Angle Optimization Results
how removing points based on the angle affects the number of samples.

Samples per meter set to 0.5

Figure 68.
Path Sampling Optimization using

minimum angle of:
60 degrees.

Figure 69.
Path Sampling Optimization using

minimum angle of:
20 degrees.

Figure 70.
Path Sampling Optimization using

minimum angle of:
10 degrees.

A small addition made to the agent is the introduction of reaction speed. Each
agent is assigned a minimum and maximum reaction speed, from which it selects
a random value. The agent senses at an interval determined by this reaction
speed. This enhancement improves optimization by reducing the number of
queries each frame, and enables the agent to replicate the reaction speed of a
real driver, adding to the realism.

Rijken Julian

DAE - Graduation work 2024-2025 53/78

6.4 Stop Point Positioning Using Front Sensor
Using the sensor data we can move the stop point discussed in “5.2 Stop Point”
to slow down the agent and prevent it from crashing into the boxes. We can
apply the following formula where; 𝑃𝑃 represents the current position of the
agent, from the center. 𝐹𝐹 represents the forward vector of the agent. 𝑑𝑑front
represents the front sensor hit distance. 𝑑𝑑offset represents the stopping
distance offset (𝑑𝑑offset = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ ⋅ 𝑉𝑉𝑉𝑉𝑉𝑉).

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑷𝑷 + 𝑭𝑭(𝑑𝑑front − 𝑑𝑑offset)

Figure 71. Formula for calculating the stop point.

Stop Point Positioning Results
Paused when the first agent in line reaches the stop point

With VLM defined as the Vehicle Length Multiplier

Figure 72. Stop point
positioning. Using:

VLM = 0.0

Figure 73. Stop point
positioning. Using:

VLM = 0.5

Figure 74. Stop point
positioning. Using:

VLM = 1.0

For the VLM to be calculated we require the agent size. This size is defined
in the agent component and is show in “Figure 64” below:

Figure 75. Showing
agents lined up behind
each other as they brake
for the stopping point.
Red boxes represent the
agent size, and the
white boxes represent
the physics box cast.

Rijken Julian

DAE - Graduation work 2024-2025 54/78

7. Agent Driving Practical Results
The agent is capable of steering and managing its inertia to reach the speed
limit while avoiding collisions. To evaluate its performance effectively, it
is appropriate to test the agent on a road alongside other agents.

The results demonstrate that the agents perform effectively, with all of them
successfully reaching the end of the path without any collisions.

Figure 76. Showcase of agents driving on a two directional single lane road. Going

from start to end visualized by the tire marks.

In order to test collision avoidance, physics cubes have been placed on the
track. This demonstrates the ability of the agents to avoid collisions even
when an obstacle is not defined as an agent on the path.

Figure 77. Example of road blocked by obstacles.

Rijken Julian

DAE - Graduation work 2024-2025 55/78

7.1 Phantom Traffic Jams
A phantom traffic jam is a phenomenon often experienced by drivers. This is a
traffic jam that seemingly appears out of thin air, and is an effect of
drivers having to suddenly brake as they don’t keep enough distance from other
drivers. This phenomenon is amazingly described by Benjamin Seibold in their
Ted-Ed [31], CGP Gray with “The Simple Solution to Traffic” [15], and “Phantom
Traffic Jams” from the BBC One Show, Series 3 [32].

This phenomenon can easily be visualized when putting agents on a circular
road. The agents get a sphere surrounding them that visualizes their speed to
easily identify the stopped agents. Below is a top-down perspective of the
road with “Figure 78“ showing all cars with no disturbance and “Figure 79”
showing simulation after introducing disturbance.

This phantom traffic jam proceeds to infinitely travel in the opposite
direction of the driving agents, eating their speed up like a snake.

Figure 79. Example of phantom traffic jam
with disturbance.

Figure 78. Example with the lack of a
phantom traffic jam due to no disturbance.

Rijken Julian

DAE - Graduation work 2024-2025 56/78

8. Intersections
The agents are controlled by AI (Artificial Intelligence), but they are not
really all that intelligent. Even when we predict the path, the agents still
can’t predict the paths of other agents, causing them to collide. This is why
intersections are needed. The goal of an intersection is to coordinate the
agents driving through a crossing, avoiding collisions.

Figure 80. Agent crashing due to the lack of intersection guidance.

Intersections, in short, are simply when a segment from the road network
crosses with a different segment. In this simulation, intersections are set up
by connecting multiple segments together. The intersection which regulates the
agents is defined as a game object containing an intersection component and
box collider component set to be used as a trigger.

Figure 81. Example of intersection defined by a red box surrounding the waypoints
making up the intersection.

Rijken Julian

DAE - Graduation work 2024-2025 57/78

The intersection generates a list of possible turns and crossings based on 2D
line intersection. It also stores information about the angle of the turn, the
distance, and direction. Each turn also defines a state describing whether the
turn is clear, occupied, or blocked. This case study will not dive further
into the implementation specific details, these details can be found in the
appendices.

Due to the intersection having information about each turn and crossing, it
can smartly open and close turns based on its occupation. This works similar
to how rail signals work. The intersection updates in-range agents’
intersection state which consists of none, waiting, and moving. The agents can
directly respond to this and drive as if there is no intersection at all. One
future improvement could be to incorporate driver reaction speed into the
simulation as agents now directly get information about the intersection. The
intersection currently updates these states when an agent enters the
intersection or when an agent leaves the intersection.

One small addition made is that when an agent spends too much time in an
intersection it will simply ignore the intersection state and force its way
tough using the regular collision avoidance. This is similar to how games like
GTA work, you can see this in action when blocking a highway, cars will slowly
start to ram each other when stuck for an extended duration [33].

Figure 82. Example of intersection. Green lines representing clear turns, red as
blocked turns and blue for occupied turns. Agents with a blue ball are set to moving,

agents with a red ball are set to waiting.

Rijken Julian

DAE - Graduation work 2024-2025 58/78

8.1 Intersection Priority Rules
Intersections with no priority rules only really work in a simulation, as real
drivers require time to figure out what other drivers will do. However, agents
in this simulation directly respond to the intersection clearing up. Even with
the agents capable of instantly communicating, it would be ideal for the
simulation to incorporate priority rules, as this would add a layer of
realism.

In order to test the effects priority-rules have on the simulation, the
following test scene will be used. This scene includes an intersection with
two single-lane roads crossing, both with two turns. The simplicity of this
intersection will be useful in visualizing the difference, as with multiple
lanes the data will be too cluttered. The test scene also has, on both sides,
a set of ten cars. These cars will attempt to drive to the end of the road and
will randomly pick one of the two turns presented to them.

Figure 83. Top-down view of two single lane roads coming together for an intersection.
Both roads have two turns. Each side has ten cars totaling twenty cars for this

intersection test.

The results below show how both lane occupation (no priority), arrival
priority, and directional priority intersection result in similar throughput.
This of course is in an ideal simulated environment and this case study does
not go further into detail about the reaction time of the agents. The focus
here lies on the order in which agents go through the intersection.

Rijken Julian

DAE - Graduation work 2024-2025 59/78

Intersection Priority Rules Results
Based on 20 agents driving on 2 roads with 4 turns

as shown in “Figure 83”. Each color represents a lane of agents.

Figure 84.
Directional Priority

showing how agents drive
in clusters.

Figure 85. Arrival
Priority showing

consistent one by one
driving behavior.

Figure 86. Lane
Occupation showing how
agents flow through the
intersection as soon as
a turn is available.

30

40

50

60

70

80

90

100

110

Di
st
an
ce

Directional Priority

30

40

50

60

70

80

90

100

110

Di
st
an
ce

Arrival Priority

30

40

50

60

70

80

90

100

110

Di
st
an
ce

Turn Occupation (No Priority)

Rijken Julian

DAE - Graduation work 2024-2025 60/78

8.2 Roundabouts
A simple intersection as seen in “8.1 Intersection Priority Rules” works but
is quite slow at handling large amounts of traffic. The building of road
infrastructure and optimizing road networks to accomplish optimal flow is an
entire field on its own. With the goal of this paper in mind, it would be a
great test to see how agents perform when driving on different types of
intersections.

To test different types of intersections, the intersection component should be
configurable to different priority rules. For instance, to configure a
roundabout, the agents driving on it have the right of way. In this scenario,
the intersection should be configured with the left-hand rule, where agents
coming from the left direction (on the roundabout) have priority over those
coming from the right (on the main road). A roundabout could be simplified to
four different smaller intersections. As shown below, the roundabout is
configured using different intersections all set with directional priority on
the left-hand side.

Figure 87.
Example of roundabout setup using four
different small intersections set to

use left direction priority.

8.3 Intersection Types
To round up this case study, a final experiment is created were the agent with
all the previously discussed parameters, including steering, throttle, brake,
and collision avoidance will drive on various road networks testing the flow
of different intersection types. With the current state of the agents,
realistic traffic flow is expected from this experiment.

Twenty agents are placed on a 4-way intersection. Each agent randomly decides
their next turns. This might make some agents drive multiple circles on the
roundabout. However, even with this issue, the flow still increases with the
quality of the infrastructure. This final experiment is highly inspired by
Euverus [16], who did this experiment using Cities Skylines.

Rijken Julian

DAE - Graduation work 2024-2025 61/78

70

90

110

130

150

Di
st
an
ce

70

90

110

130

150

Di
st
an
ce

70

90

110

130

150

Di
st
an
ce

70

90

110

130

150

Di
st
an
ce

Intersection Type Results
Based on 20 agents driving in 4 directions. Speed limit set to 50 km/h

Measured between 7 to 40 seconds.

Figure 89. Diamon Interchange:
Very quick driving.

Figure 91. Simple Intersection:
Agents take a long time to clear.

Figure 90. Small Roundabout: Quick
driving with minor stopping.

Figure 88. Large Roundabout: Quick
driving with no stopping.

Rijken Julian

DAE - Graduation work 2024-2025 62/78

Discussion
The results of this research highlight both the strengths and limitations of
the implemented traffic simulation framework in relation to agent behaviors
and traffic rules. The first key observation is that physics-based models
compared to attached models created many challenges such as instability and
excessive path deviations, as this model requires techniques used in real
world self-driving vehicles. However, the physics-based model also provided a
compelling foundation for realistic agent interactions, especially
interactions with the surrounding world. An ideal solution would be to use a
physics-based model when viewed from up close and an attached simplified model
when far away as seen in the GTA series.

The PID controller emerged as a robust solution for controlling agent steering
and speed. The results showed that tuning the proportional, integral, and
derivative gains significantly impacted performance, allowing agents to adhere
closely to paths even in less ideal conditions. Yet, these controllers
struggled in scenarios requiring a smooth change in value on the far end as
seen in “5.1 Speed limit” where, similar to the steering correction they
required extra code to keep the agent smooth and stable.

Path smoothing techniques, such as lookahead interpolation, highlight the
importance of predictive modelling. These approaches minimized abrupt
directional changes and enhanced movement realism, particularly for curved
road networks made of straight-line segments. Similarly, managing agent
inertia with blended methods ensured smooth speed transitions while
maintaining precise stopping at defined points.

The framework demonstrated its versatility, especially in intersection
management. Adjusting stop-point distances allowed agents to approach and stop
at intersections smoothly, avoiding abrupt halts seen in simpler
implementations, like the framework used as a base for this project. This
flexibility enhanced traffic flow and collision avoidance, as agents could
begin braking earlier, and more effectively respond to intersection changes.
Larger intersection triggers now allowed agents to decide to brake or drive
earlier, giving them time to come to a smooth stop right at the intersection,
instead of abruptly braking, and requiring a precisely placed trigger to
define the stop position.

Rijken Julian

DAE - Graduation work 2024-2025 63/78

The stop-point mechanism was also instrumental in collision avoidance. By
dynamically adjusting the stop point based on sensor feedback, agents could
smoothly decelerate to prevent collisions without abrupt actions. Due to
collision avoidance also using the same stop point mechanism the
implementation was straightforward.

The final intersection test validated the framework's cohesiveness. Agents
demonstrated realistic behavior, navigating intersections, roundabouts, and
replicating phantom traffic jams. These results showcase a robust, physics-
based traffic simulation capable of replicating real-world effects while
remaining applicable to a gaming environment.

Rijken Julian

DAE - Graduation work 2024-2025 64/78

Conclusion
This study set out to answer the research question: "How are physics-based
traffic simulations for games affected by agents and traffic rules?" Through
rigorous testing and analysis, several key findings emerged that validate the
formulated hypotheses.

Hypothesis 0 (Null) which posited that agents and traffic rules have no
visible impact on the simulated traffic, was conclusively refuted. The results
demonstrated that agent behaviors and traffic rules significantly shape the
visible and measured aspects of a physics-based traffic simulation.

Hypothesis 1 (Agent Decisions) was supported by the observation that different
agent decisions visibly influenced both speed and path deviation. The use of
physics-based models combined with PID controllers allowed agents to follow
paths with high accuracy. However, deviations in complex scenarios highlighted
the importance of supplementary corrections, such as backward and instability
controls, for maintaining stability and alignment.

Hypothesis 2 (Collision Avoidance) was validated, showing that effective
collision avoidance is crucial to prevent agents from crashing into each other
or physical obstacles. Without it, agents would drive unchecked, leading to
collisions. Techniques like lookahead interpolation and adaptive stop points
ensured agents could navigate smoothly, allowing for realistic phenomena like
phantom traffic jams while avoiding crashes.

Hypothesis 3 (Intersection Flow) was also validated through experiments with
different intersection types. The results illustrated how intersection rules,
ranging from lane occupation to arrival priority, directly affected traffic
flow efficiency and agent behavior. Each method had distinct strengths and
weaknesses, reinforcing the importance of selecting appropriate intersection
rules based on the desired simulation goals.

In conclusion, this study establishes that agents and traffic rules play
pivotal roles in shaping physics-based traffic simulations for games. The
insights gained not only provide practical methodologies for game developers
but also contribute to the broader academic discourse on multi-agent systems.

Rijken Julian

DAE - Graduation work 2024-2025 65/78

Future work
The potential for further developing traffic simulation systems is vast, and
several key areas can be explored in future work to enhance realism, optimize
performance, and broaden the scope of traffic simulations. Below are a few
important directions that could be pursued.

1. Special Scenarios
An important area for future traffic simulation research is the integration of
special scenarios that can significantly impact traffic flow and agent
behavior.

Police chases, for example, introduce high-speed pursuits that create dynamic
traffic conditions. Emergency vehicles are another key scenario, where
simulation of their interactions with other vehicles, as well as their impact
on traffic, would make the simulation more realistic. Even drunk drivers would
be a fun addition especially in a gaming environment.

Additionally, the inclusion of vehicle collisions would add complexity by
introducing road blockages and delays, further challenging the traffic system.

The inclusion of large vehicles like trucks and buses in the simulation would
present unique challenges. These vehicles often have different
maneuverability, speed, and road usage compared to passenger cars, thus
requiring tailored agent behaviors and pathfinding algorithms as some roads
might not support those vehicles.

2. Car Lifetime Management
Another significant area for future development is the management of car
lifetimes within the simulation. This includes the spawning and de-spawning of
vehicles, which could be managed more efficiently with techniques such as
occlusion culling. By only spawning agents in regions that are visible to the
player, it would be possible to significantly reduce the computational load.
This topic is broad and complex enough to warrant its own dedicated study and
investigating how to handle vehicle lifetimes in the simulation would have a
meaningful impact on performance and allow for more dense simulations.

Rijken Julian

DAE - Graduation work 2024-2025 66/78

3. Agent Specific Behavior
For the next iteration of the simulation, there is significant potential for
improving agent-specific behaviors. Pathfinding algorithms can be introduced
by providing specific goals or jobs for the agents. This would make the
simulation more aligned with city-building games, where agents have a purpose
beyond just traversing from one point to another. In contrast to open-world
simulations, a more structured approach where agents have complex motivations
could lead to a more dynamic and realistic traffic experience.

Additionally, introducing lane-switching and merging behaviors could allow
agents to use multi-lane roads. This would allow the simulation to not be
restricted to just single-lane roads, as opposed to the current setup.
Additionally, it would require a more advanced road network.

There is also an opportunity to improve the driving strategies by implementing
counter-steering to optimize vehicle trajectory. For example, agents could
take wider corners similar to how race drivers adjust their steering,
optimizing for speed and efficiency rather than simply reacting when at the
end of a turn.

Splines can offer smooth road networks; this paper has deliberately excluded
their use, as the focus here is on agent behavior rather than the road network
itself. However, incorporating splines in future work would be beneficial,
particularly in enhancing the road network and making it more refined. This
work could go hand in hand with a more advanced road network.

Furthermore, agents could be programmed to maneuver around obstacles instead
of simply stopping when encountering a blockage. Agents could track how long
they have spent stuck and might attempt more aggressive approaches to getting
unstuck, such as slamming into other drivers. This of course would not be
ideal outside of the virtual world.

The steering input is based on a -1 to 1 value which, for the agent used for
testing, maps to -50 to 50 degrees. This means the values for the PID
controller are actually based on a 50-degree angle. Future work should use the
angle of the agent directly for the error calculation instead of the steering
input.

The performance optimization of all methods employed in this simulation has
not been addressed at all and would be beneficial for a larger simulation.

Rijken Julian

DAE - Graduation work 2024-2025 67/78

Critical Reflection
This paper was quite the journey. I have never really written anything before,
let alone a paper. This made the writing quite difficult. When I started
writing this paper, I did not even know the meaning of a citation or a
bibliography or any of the relevant terms for that matter.

I had difficulty starting and it felt like, every time I came up with a
research question, after a few weeks of reflection, it again seemed
impossible. This process kept repeating itself. The way I battled this
difficulty is the way I have always done it: Just start making something. I
knew I wanted to do something with traffic simulation for the reasons you will
find in the preface. I have difficulty reading so I just started making a
traffic simulation without much research beforehand. This was difficult, but I
somehow managed to make a working but not so good traffic simulation within a
few days. This alone allowed me to come up with so many possibilities when it
came to testing and topics to write about. In the end, I ended up remaking it
like described in the case study, but this shows that sometimes just doing and
failing is much more effective than never starting at all.

Managing scope proved to be incredibly difficult, especially as someone who
loves to just mess around with code and create things without much
consideration. For instance, I added blinkers to the agents, and started
constantly testing and playing around with the simulation, such as seeing if
agents could also jump and still follow the path (they can).

Figure 93. Agents jumping, because
Julian apparently does not know how

to focus

Figure 92. Agents using their
blinkers because Julian once again

does not know how to focus

Rijken Julian

DAE - Graduation work 2024-2025 68/78

In the end, I somehow managed to write all of it within the deadline (I say 2
days before the deadline), but I do firmly believe that over-scoping is a much
better quality than under-scoping, as it has always left me with work I can be
proud of. Writing the case study ended up being really fun and I noticed that
it ended up almost like a blog post, which is not quite the goal, but it did
allow me to stay motivated and I feel like it created a very fun blend between
learning, explaining, and talking about test results. Writing in a scientific,
formal way was quite the challenge and I hope to still improve on this.

I really enjoyed data collection for this project. I myself often make graphs
plotting the electricity usage in my dorm. This paper really forced me to
apply this to my creative process. It took quite some time to get the graphs
into the paper, I actually initially started making them in Google Sheets and
then later moved to Microsoft Word. This is why there is a sudden change in
graph styles. The takeaway here is that I actually learned a lot about the
performance of the simulation thanks to the graphs. It was quite difficult to
spot the differences made by the varying types of intersections, or what the
effects were of changing the PID controller values, and those graphs really
helped with visualizing the change.

Much of my work consists of just making a game and presenting gameplay, and I
have come to realize that presenting the creation of the work is also really
important. I have always loved helping others learn and I am super happy to be
able to have written a paper that hopefully can contribute to the greater game
development industry, helping others get a better understanding. I might even
attempt to write a blog post about the paper or even try making a YouTube
series as this is always something I wanted to try.

Saying that writing a paper was difficult for me would be an understatement.
As a bit of context, when I was just eight years old, I received a certificate
confirming I have dyslexia. This document directly described that I have
trouble keeping up with academic qualifications due to my predisposition and
that my talent would be frustrated due to a failing lack of literacy. This,
however, did not ever stop me from achieving my goals and therefore makes
writing this paper quite the emotional and poetic end of my academic journey
(for now).

Rijken Julian

DAE - Graduation work 2024-2025 69/78

References
The references have been documented in accordance with the IEEE citation style.

[1] How SimCity Works - And Why Cities: Skylines Works Better. Accessed: Dec.

31, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=AUFFrDkRw-w

[2] “Eclipse SUMO - Simulation of Urban MObility,” Eclipse SUMO - Simulation
of Urban MObility. Accessed: Dec. 31, 2024. [Online]. Available:
https://www.eclipse.dev/sumo/

[3] “Development Diary #2: Traffic AI,” Paradox Interactive Forums. Accessed:
Dec. 31, 2024. [Online]. Available:
https://forum.paradoxplaza.com/forum/threads/development-diary-2-traffic-
ai.1591141/

[4] “Artificial intelligence in video games,” Wikipedia. Dec. 20, 2024.
Accessed: Dec. 31, 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Artificial_intelligence_in_vid
eo_games&oldid=1264116049

[5] “Traffic simulation,” Wikipedia. Nov. 20, 2024. Accessed: Dec. 31, 2024.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Traffic_simulation&oldid=12584
92485

[6] K. Lahdenranta, “AI behavior in equal intersections : modification of
Simulandia traffic AI.” Accessed: Dec. 31, 2024. [Online]. Available:
http://www.theseus.fi/handle/10024/503767

[7] “Agent-based model,” Wikipedia. Nov. 25, 2024. Accessed: Dec. 31, 2024.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Agent-
based_model&oldid=1259486239

[8] “Game theory,” Wikipedia. Dec. 27, 2024. Accessed: Dec. 31, 2024.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Game_theory&oldid=1265477029

[9] A. Champion, R. Mandiau, S. Espié, and C. Kolski, “Multi-Agent Road
Traffic Simulation: Towards Coordination by Game Theory Based Mechanism,”
Oct. 2001.

[10] L. Cortés-Berrueco, C. Gershenson, and C. Stephens, “Traffic Games:
Modeling Freeway Traffic with Game Theory,” PLOS ONE, vol. 11, p.
e0165381, Nov. 2016, doi: 10.1371/journal.pone.0165381.

Rijken Julian

DAE - Graduation work 2024-2025 70/78

[11] R. Mandiau, A. Champion, J.-M. Auberlet, S. Espié, and C. Kolski,
“Behaviour based on decision matrices for a coordination between agents
in a urban traffic simulation,” Appl. Intell., vol. 28, pp. 121–138,
2008.

[12] Cities: Skylines, Traffic AI I Feature Highlights Ep 2 I Cities: Skylines
II, (Jun. 26, 2023). Accessed: Dec. 31, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=wgjpo2lKt7I

[13] “Free and open-source software,” Wikipedia. Dec. 30, 2024. Accessed: Dec.
31, 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Free_and_open-
source_software&oldid=1266108823

[14] “ZoneGraph Quick Start Guide | Tutorial,” Epic Games Developer. Accessed:
Dec. 31, 2024. [Online]. Available:
https://dev.epicgames.com/community/learning/tutorials/qz6r/unreal-
engine-zonegraph-quick-start-guide

[15] CGP Grey, The Simple Solution to Traffic, (Aug. 31, 2016). Accessed: Dec.
31, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=iHzzSao6ypE

[16] euverus, Traffic flow measured on 30 different 4-way junctions, (Dec. 05,
2017). Accessed: Dec. 31, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=yITr127KZtQ

[17] J. Samyn, “Traffic Simulation Model integrated into Unreal Engine,”
Bachelor proef, Howest University of Applied Sciences, Digital Arts and
Entertainment (DAE), Kortrijk, Belgium, 2024.

[18] “City Sample Project Unreal Engine Demonstration | Unreal Engine 5.5
Documentation | Epic Developer Community,” Epic Games Developer.
Accessed: Dec. 31, 2024. [Online]. Available:
https://dev.epicgames.com/documentation/en-us/unreal-engine/city-sample-
project-unreal-engine-demonstration

[19] K. Lahdenranta, “AI Behavior in Equal Intersections,” Theseus, 2021.

[20] “PlainXML - SUMO Documentation.” Accessed: Jan. 04, 2025. [Online].
Available: https://sumo.dlr.de/docs/Networks/PlainXML.html

[21] “SUMO Road Networks - SUMO Documentation.” Accessed: Jan. 04, 2025.
[Online]. Available:
https://sumo.dlr.de/docs/Networks/SUMO_Road_Networks.html

[22] “CARLA Simulator.” Accessed: Jan. 04, 2025. [Online]. Available:
https://carla.readthedocs.io/en/latest/

Rijken Julian

DAE - Graduation work 2024-2025 71/78

[23] “ASAM OpenDRIVE®.” Accessed: Jan. 04, 2025. [Online]. Available:
https://www.asam.net/standards/detail/opendrive/

[24] Kenney, “City Kit (Roads) · Kenney.” Accessed: Dec. 31, 2024. [Online].
Available: https://kenney.nl/assets/city-kit-roads

[25] Freya Holmér, The Continuity of Splines, (Dec. 07, 2022). Accessed: Dec.
31, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=jvPPXbo87ds

[26] “Proportional–integral–derivative controller,” Wikipedia. Dec. 25, 2024.
Accessed: Jan. 04, 2025. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Proportional%E2%80%93integral%
E2%80%93derivative_controller&oldid=1265194949

[27] Controlling Self Driving Cars. Accessed: Dec. 31, 2024. [Online Video].
Available: https://www.youtube.com/watch?v=4Y7zG48uHRo

[28] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?,” in 2017 IEEE Intelligent Vehicles
Symposium (IV), 2017, pp. 812–818. doi: 10.1109/IVS.2017.7995816.

[29] “Kinematic Bicycle Model — Algorithms for Automated Driving.” Accessed:
Jan. 08, 2025. [Online]. Available:
https://thomasfermi.github.io/Algorithms-for-Automated-
Driving/Control/BicycleModel.html

[30] “Ramer–Douglas–Peucker algorithm,” Wikipedia. Nov. 29, 2024. Accessed:
Jan. 08, 2025. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Ramer%E2%80%93Douglas%E2%80%93
Peucker_algorithm&oldid=1260206065

[31] TED-Ed, Why the @#$% is there so much traffic? - Benjamin Seibold, (May
28, 2020). Accessed: Dec. 31, 2024. [Online Video]. Available:
https://www.youtube.com/watch?v=TNokBgtSUvQ

[32] SotonTRG, Phantom Traffic Jams, (Jun. 30, 2011). Accessed: Dec. 31, 2024.
[Online Video]. Available: https://www.youtube.com/watch?v=Rryu85BtALM

[33] settimi_, GTA V - NPCs drive off overpass and cause never-ending chain
reaction explosions, (Nov. 23, 2021). Accessed: Jan. 08, 2025. [Online
Video]. Available: https://www.youtube.com/watch?v=lXAkCYsFfoo

Rijken Julian

DAE - Graduation work 2024-2025 72/78

Acknowledgements
I would like to express my deepest gratitude to several individuals and
resources who contributed significantly to the completion of this work.

Firstly, I wish to extend my heartfelt thanks to my supervisor, Vanden Abeele
Alex, whose insightful feedback and guidance was invaluable throughout the
research process. His expertise and dedication played a crucial role in
shaping this paper.

I am also grateful to my coach, Geeroms Kasper, for his support and advice on
the reflection report. His assistance helped me better understand and
articulate my experiences during this project.

Special thanks to the creators of the "unity-traffic-simulation" package
(available at https://github.com/mchrbn/unity-traffic-simulation). This
resource was instrumental in providing a solid foundation for developing my
own traffic simulation.

The principles of PID-Control have been thoroughly researched, and I would
like to express my gratitude AerospaceControlsLab [27] for their valuable
insights into its implementation-specific detail.

Additionally, I would like to acknowledge the support and feedback provided by
my peers Huens Nigel, Weel Bouke, Horrie Finian, Heyde Robbe, Ceulemans Yarno,
and Devred Matías. Their collaboration and insights were immensely helpful
during the development of my first paper. I would also like to express my
deepest gratitude to Vandamme Saar for providing the car model seen in almost
every figure. Their contribution significantly enhanced the realism and
quality of the simulations. And of course, my mom for helping me get started
on the writing. I would also like to acknowledge the Coffee.

To all those who contributed directly or indirectly to this work, I extend my
sincere thanks. Your help and encouragement are greatly appreciated.

https://github.com/mchrbn/unity-traffic-simulation

Rijken Julian

DAE - Graduation work 2024-2025 73/78

Appendices

1. Online Repository
The traffic simulation software developed for use in testing was created using
Unity and Git. The repository is available at:
https://github.com/JulianRijken/TrafficSimulation

2. Disambiguation

AI “Artificial intelligence”
In the broadest sense, is intelligence exhibited by machines, particularly
computer systems. For our purpose we will not be talking about LLM's but about
more simple AI regularly uses in games for NPC

NPC "non-playable character"
Refers to characters or in a game that cannot be played meaning that they are
controlled by the computer. The term is generally used to define objects in a
game that are controlled by the game.

LLM "large language model"
Is a type of artificial intelligence algorithm that uses deep learning
techniques and massively large data sets to understand, summarize, generate
and predict new content. The term generative AI also is closely connected with
LLMs, which are, in fact, a type of generative AI that has been specifically
architected to help generate text-based content.

ITS "Intelligent Traffic System"
A Unity package that uses true physics driven cars to simulate traffic around
the player which gives a realistic feel of traffic simulation, also
pedestrians can be simulated on the sidewalks and several other kind of
vehicles.

Traffic simulation
Or the simulation of transportation systems is the mathematical modeling of
transportation systems (e.g., freeway junctions, arterial routes, roundabouts,
downtown grid systems, etc.) through the application of computer software to
better help plan, design, and operate transportation systems.

https://github.com/JulianRijken/TrafficSimulation
https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence
https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://www.techtarget.com/searchenterpriseai/definition/generative-AI

Rijken Julian

DAE - Graduation work 2024-2025 74/78

Game theory [8]
is the study of mathematical models of strategic interactions. It has
applications in many fields of social science, and is used extensively in
economics, logic, systems science and computer science.

ABM “Agent-based modeling” [7]
Agent-based modeling is a computational approach used to simulate the
interactions of autonomous agents in order to assess their effects on the
system as a whole. Each agent in an ABM operates based on predefined rules and
can interact with other agents and the environment, leading to emergent
behaviors. ABM is widely used in various fields, including traffic simulation,
economics, social sciences, and ecology. In the context of traffic
simulations, ABM can model individual vehicles or pedestrians as agents that
follow specific behaviors, such as adjusting speed based on traffic
conditions, making decisions at intersections, or interacting with other
agents. This approach helps to better understand complex systems and predict
outcomes in dynamic environments.

GTA “Grand Theft Auto”
A popular open-world action-adventure video game series developed by Rockstar
Games. The series is known for its immersive urban environments, dynamic
gameplay, and the integration of missions, vehicles, and NPCs. Traffic and
pedestrian simulations play a crucial role in enhancing the realism of its
game worlds.

Cities Skylines
A city-building simulation game developed by Colossal Order and published by
Paradox Interactive. It allows players to design, build, and manage cities
with detailed traffic systems, zoning, public services, and urban planning
tools. Cities Skylines is widely regarded as a benchmark for realistic traffic
simulation in video games.

SimCity
A pioneering city-building simulation game where players design, build, and
manage a city. The game includes systems for managing urban infrastructure,
including transportation and traffic networks, and has influenced many
subsequent traffic simulation games.

Open-world games
Games with large, freely explorable environments where players can interact
with the world and its systems at their own pace, without fixed objectives.

Rijken Julian

DAE - Graduation work 2024-2025 75/78

These games often feature dynamic traffic, AI-driven NPCs, and complex,
evolving systems that enhance realism.

FOSS “Free and Open Source Software” [13]
Refers to software that is both free to use and modify, with its source code
openly available to the public. This allows users to study, improve, and
distribute the software. FOSS promotes transparency, collaboration, and
innovation, and it is commonly used in various applications, including
operating systems, game development, and productivity tools. Examples include
Linux, Blender, and Godot Engine.

SUMO “Simulation of Urban MObility” [2]
Is an open-source traffic simulation software that models traffic patterns,
pedestrian movements, and other elements of urban transport systems. It allows
for detailed traffic analysis, including vehicle behavior, signal timings, and
congestion modeling. Sumonity refers to a Unity integration of SUMO, enabling
the simulation of realistic traffic and transportation systems within Unity,
making it easier to implement traffic simulations in game environments or
research applications. It provides a framework for combining traffic modeling
with game engines for enhanced realism in simulations.
https://eclipse.dev/sumo/

Bezier Curves / Splines
Are mathematical curves used in graphics, game development, and pathfinding
algorithms. Bezier curves are defined by control points and provide smooth,
continuous curves. Splines, which include Bezier curves, are used to represent
paths, roads, or routes, and are commonly used to model the movement of
vehicles or NPCs in simulation games to ensure fluid motion.

A* “A-Star”
Is a widely used pathfinding algorithm that helps find the shortest path
between two points in a grid or graph. It combines aspects of Dijkstra's
Algorithm and a heuristic approach, making it efficient for real-time
applications like games, where it can dynamically calculate optimal paths for
NPCs or vehicles in response to changing environments.
Dijkstra
Is an algorithm for finding the shortest paths between nodes in a graph,
particularly useful in situations where all edges have the same weight or
cost. It’s widely used in navigation systems, map routing, and simulations for
determining the quickest route between points, though it is less efficient

https://eclipse.dev/sumo/

Rijken Julian

DAE - Graduation work 2024-2025 76/78

than A* for games with more complex environments due to its exhaustive nature.

Game Theory
A field of study concerned with mathematical models of strategic interaction
between rational decision-makers. It is applied across various disciplines,
such as economics, political science, and computer science, to understand and
predict outcomes of competitive and cooperative behaviors.
Nash Equilibrium
A concept in game theory referring to a situation in which no player can
improve their outcome by unilaterally changing their strategy, assuming the
strategies of the other players remain unchanged. This equilibrium is a
fundamental idea in strategic decision-making.

Payoff Matrices
A tool used in game theory to represent the outcomes of different strategies
in a game. The matrix provides a structured way to analyze the payoffs or
rewards each player receives based on the combination of strategies chosen by
all participants in the game.

Proportional-Integral-Derivative Control
PID-Control is a feedback mechanism that adjusts system inputs to minimize
error by combining three components:

● Proportional (P): Reacts to the current error to provide immediate
correction.

● Integral (I): Addresses past accumulated errors to eliminate steady-
state offsets.

● Derivative (D): Anticipates future errors by responding to the rate of
error change, helping stabilize the system.

In Steering Cars PID-Control is used to adjust the steering angle for
following a desired path or trajectory, such as a lane or racing line.

Rijken Julian

DAE - Graduation work 2024-2025 77/78

Figure 94. PID controller overview. By Arturo Urquizo - File:PID.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17633925

https://commons.wikimedia.org/w/index.php?curid=17633925

	Contents
	Abstract
	Keywords
	Preface
	List Of Figures
	Introduction
	1. Research Question
	2. Hypothesis

	Literature Study / Theoretical Framework
	1. Introduction to Traffic Simulations for Games
	1.1 Historical Context and Importance in Gaming
	1.2 Real-World vs. Game Traffic Simulations
	1.3 Challenges in Current Traffic Simulation Methodologies

	2. Foundational Theories
	2.1 Path Finding Algorithms
	2.2 Agent-Based Modeling and Behavior
	2.3 Game Theory in Traffic Simulations

	3. Relevant Frameworks and Case Studies
	3.1 Open-World Traffic Simulations
	3.2 Intersection Design and Traffic Flow Analysis

	4. Overview of Tools and Techniques
	4.1 FOSS Solutions and Proprietary Systems
	4.2 Physics-Based and Attached Models
	4.3 Existing Studies on Traffic Dynamics

	Case Study
	1. Introduction
	2 Road Network
	2.1 Existing Systems
	2.2 Proposed Methodology

	3 Physics-Based Testing
	4. Agent Steering
	4.1 Path Alignment Using PID
	P (Proportional) & D (Derivative) - Control Results
	I (Integral) - Control Results

	4.2 Path Alignment Correction
	Backwards Correction Results
	Instability Correction Results

	4.3 Path Deviation Optimization and Smoothing
	4.4 Proposed Methodology for Path Smoothing
	Deviation Optimization Interpolation Results

	5. Agent Inertia Management
	5.1 Speed limit
	Speed Limit Proportional Gain Test Results
	Speed Limit Smoothing Results

	5.2 Stop Point
	Stop Point Results

	5.3 Sharp corners
	Speed Limit Deviation Results

	5.4 Combined Input

	6 Obstacle Avoidance
	6.1 Directional Front Sensor
	Directional Front Sensor Corner Navigation Results

	6.2 Rotational Front Sensor
	6.3 Path Sampling Front Sensor
	Path Sample Number Results
	Path Sample Angle Optimization Results

	6.4 Stop Point Positioning Using Front Sensor
	Stop Point Positioning Results

	7. Agent Driving Practical Results
	7.1 Phantom Traffic Jams

	8. Intersections
	8.1 Intersection Priority Rules
	Intersection Priority Rules Results

	8.2 Roundabouts
	8.3 Intersection Types
	Intersection Type Results

	Discussion
	Conclusion
	Future work
	1. Special Scenarios
	2. Car Lifetime Management
	3. Agent Specific Behavior

	Critical Reflection
	References
	Acknowledgements
	Appendices
	1. Online Repository
	2. Disambiguation

